login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153130 Period 6: repeat [1, 2, 4, 8, 7, 5]. 26
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Digital root of 2^n.

A regular version of Pitoun's sequence: a(n) = A029898(n+1).

Also obtained from permutations of A141425, A020806, A070366, A153110, A153990, A154127, A154687, or A154815.

This sequence and its (again period 6) repeated differences produce the table:

..1,..2,..4,..8,..7,..5,..1,..2,..4,..8,..7,...

..1,..2,..4,.-1,.-2,.-4,..1,..2,..4,.-1,.-2,...

..1,..2,.-5,.-1,.-2,..5,..1,..2,.-5,.-1,.-2,...

..1,.-7,..4,.-1,..7,.-4,..1,.-7,..4,.-1,..7,...

.-8,.11,.-5,..8,-11,..5,.-8,.11,.-5,..8,-11,...

.19,-16,.13,-19,.16,-13,.19,-16,.13,-19,.16,...

-35,.29,-32,.35,-29,.32,-35,.29,-32,.35,-29,...

.64,-61,.67,-64,.61,-67,.64,-61,.67,-64,.61,...

If each entry of this table is read modulo 9 we obtain the very regular table:

..1,..2,..4,..8,..7,..5,..1,..2,..4,..8,..7,...

..1,..2,..4,..8,..7,..5,..1,..2,..4,..8,..7,...

..1,..2,..4,..8,..7,..5,..1,..2,..4,..8,..7,...

..1,..2,..4,..8,..7,..5,..1,..2,..4,..8,..7,...

..1,..2,..4,..8,..7,..5,..1,..2,..4,..8,..7,...

..1,..2,..4,..8,..7,..5,..1,..2,..4,..8,..7,...

Also the decimal expansion of the constant 125/1001. - R. J. Mathar, Jan 23 2009

Terms of the simple continued fraction of 254/(sqrt(548587) - 565). - Paolo P. Lava, Feb 17 2009

Digital root of the powers of any number congruent to 2 mod 9. - Alonso del Arte, Jan 26 2014

REFERENCES

Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

LINKS

Table of n, a(n) for n=0..107.

Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).

FORMULA

a(n) = (1/30) * {29*(n mod 6) + 19 * [(n+1) mod 6] + 14 * [(n+2) mod 6] - 11 * [(n+3) mod 6] - [(n+4) mod 6] + 4 * [(n+5) mod 6]. - Paolo P. Lava, Dec 19 2008

a(n) + a(n+3) = 9 = A010734(n).

G.f.: (1+x+2x^2+5x^3)/((1-x)(1+x)(1-x+x^2)). - R. J. Mathar, Jan 23 2009

a(n) = A082365(n) mod 9. - Paul Curtz, Mar 31 2009

a(n) = -1/2*cos(Pi*n) - 3*cos(1/3*Pi*n) - 3^(1/2)*sin(1/3*Pi*n) + 9/2. - Leonid Bedratyuk, May 13 2012

a(n) = A010888(A004000(n+1)). - Ivan N. Ianakiev, Nov 27 2014

From Wesley Ivan Hurt, Apr 20 2015: (Start)

a(n) = a(n-6) for n>5.

a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.

a(n) = (2+3*(n-1 mod 3))*(n mod 2)+(1+3*(-n mod 3))*(n-1 mod 2). (End)

MAPLE

seq(op([1, 2, 4, 8, 7, 5]), n=0..40); # Wesley Ivan Hurt, Jul 05 2016

MATHEMATICA

Flatten[Table[{1, 2, 4, 8, 7, 5}, {20}]] (* Paul Curtz, Dec 19 2008 *)

Table[Mod[2^n, 9], {n, 0, 99}] (* Alonso del Arte, Jan 26 2014 *)

PROG

(PARI) a(n)=lift(Mod(2, 9)^n) \\ Charles R Greathouse IV, Apr 21 2015

(MAGMA) &cat [[1, 2, 4, 8, 7, 5]^^30]; // Wesley Ivan Hurt, Jul 05 2016

CROSSREFS

Cf. A030132, A145389, A189510.

Cf. digital roots of powers of c mod 9: c = 4, A100402; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Sequence in context: A071571 A201568 A029898 * A225746 A021406 A065075

Adjacent sequences:  A153127 A153128 A153129 * A153131 A153132 A153133

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Dec 19 2008

EXTENSIONS

Edited by R. J. Mathar, Apr 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 12:34 EDT 2018. Contains 316379 sequences. (Running on oeis4.)