login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158936 List of coprime pairs (x,y) such that x^2+y^2=13^n with 0<x<y. 4
0, 1, 2, 3, 5, 12, 9, 46, 119, 120, 122, 597, 828, 2035, 4449, 6554, 239, 28560, 56403, 86158, 145668, 341525, 246046, 1315911, 3369960, 3455641, 3627003, 17021162, 23161315, 58317492, 128629846, 186118929, 13651680, 815616479, 1590277918, 2474152797, 4241902555, 9719139348, 6712571031, 37641223154, 95420159401, 99498527400, 107655263398, 485257533003 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n>2, all other solutions (x,y) are divisible by 13, e.g., 26^2+39^2=13^3.

LINKS

Table of n, a(n) for n=0..43.

FORMULA

n=1: 13^1=2^2+3^2, hence a(1)=2, a(2)=3,

n=2: 13^2=5^2+12^2, hence a(3)=5, a(4)=12.

MATHEMATICA

s={2, 3}; x=2; y=3; Do[A=3x+2y; If[Mod[A, 13]==0, A=Abs[3x-2y]; B=2x+3y, B=Abs[2x-3y]]; x=A; If[A>B, x=B; y=A, y=B]; s=Join[s, {x, y}], {20}]; s

Table[Select[PowersRepresentations[13^n, 2, 2], CoprimeQ @@ # &][[1]], {n, 0, 21}] (* T. D. Noe, Apr 12 2011 *)

CROSSREFS

Cf. A098122 for case x^2+y^2=5^n.

Cf. A188948, A188949 for the values of x and y separately.

Cf. A188982, A188983 for even and odd terms.

Sequence in context: A321855 A112978 A187129 * A271227 A293696 A002139

Adjacent sequences:  A158933 A158934 A158935 * A158937 A158938 A158939

KEYWORD

nonn,tabf

AUTHOR

Zak Seidov, Apr 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 10:46 EDT 2019. Contains 327094 sequences. (Running on oeis4.)