This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158934 Decimal expansion of xi = (cos(Pi/5) - 1/2) / (sin(Pi/5) + 1/2) = 0.284079... . 0
 2, 8, 4, 0, 7, 9, 0, 4, 3, 8, 4, 0, 4, 1, 2, 2, 9, 6, 0, 2, 8, 2, 9, 1, 8, 3, 2, 3, 9, 3, 1, 2, 6, 1, 6, 9, 0, 9, 1, 0, 8, 8, 0, 8, 8, 4, 4, 5, 7, 3, 7, 5, 8, 2, 7, 5, 9, 1, 6, 2, 6, 6, 6, 1, 5, 5, 0, 4, 5, 8, 7, 7, 3, 5, 1, 4, 8, 4, 5, 5, 3, 7, 3, 0, 3, 7, 8, 4, 1, 7, 7, 5, 2, 2, 3, 1, 6, 2, 5, 8, 6, 7, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This constant xi arose in the Davenport-Heilbronn zeta-function Z(s)=sum(k>=1,b(k)/k^s) where b(k) is the 5-periodic sequence with period [1,xi,-xi,0]. Z satisfies a functional equation (like zeta) but does not satisfy RH. Some nontrivial zeros are off the critical line (see reference). REFERENCES Bruce C. Berndt, Heng Huat Chan, Liang-Cheng Zhang, Explicit evaluations of the Rogers-Ramanujan continued fraction, J. reine angew. Math. 480 (1996) 141-159, eq. (1.1). H. Davenport and H. Heilbronn, On the zeros of certain Dirichlet series I, II, J. London Math. Soc. 11 (1936), 181-185 and ibid. 307-312. P. Borwein et al., The Riemann Hypothesis, Springer (2009), 136-137. LINKS FORMULA xi=(sqrt(10-2*sqrt(5))-2)/(sqrt(5)-1). (A001622-1)/(2*A019845+1). - R. J. Mathar, Apr 02 2009 EXAMPLE 0.2840790438404122960282... MATHEMATICA (Sqrt[5]-1) / (2+Sqrt[10-2*Sqrt[5]]) // RealDigits[#, 10, 104]& // First (* Jean-François Alcover, Mar 04 2013 *) PROG (PARI) xi=(cos(Pi/5)-1/2)/(sin(Pi/5)+1/2) CROSSREFS Cf. A158241. Sequence in context: A076588 A068565 A092042 * A021356 A030345 A264818 Adjacent sequences:  A158931 A158932 A158933 * A158935 A158936 A158937 KEYWORD cons,nonn AUTHOR Benoit Cloitre, Mar 31 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 12:28 EDT 2019. Contains 327098 sequences. (Running on oeis4.)