login
A158987
Numerator of Hermite(n, 3/7).
2
1, 6, -62, -1548, 8940, 660456, -417864, -390855312, -2058477168, 294079701600, 3580055071776, -266717777137344, -5459606030198592, 280902469732324992, 8640952900866956160, -333552471067548152064, -14703515590679714467584, 434789181089837215630848
OFFSET
0,2
LINKS
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) - 6*a(n-1) + 98*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 7^n * Hermite(n, 3/7).
E.g.f.: exp(6*x-49*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/7)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerator of 1, 6/7, -62/49, -1548/343, 8940/2401, 660456/16807, -417864/117649, ...
MAPLE
A158987 := proc(n)
orthopoly[H](n, 3/7) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
MATHEMATICA
Numerator[Table[HermiteH[n, 3/7], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011 *)
Table[7^n*HermiteH[n, 3/7], {n, 0, 30}] (* G. C. Greubel, Jul 09 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/7)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(6/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
CROSSREFS
Cf. A000420 (denominators).
Sequence in context: A352071 A347016 A222079 * A374227 A339239 A055005
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved