login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156017 Schroeder paths with two rise colors and two level colors. 3
1, 4, 24, 176, 1440, 12608, 115584, 1095424, 10646016, 105522176, 1062623232, 10840977408, 111811534848, 1163909087232, 12212421230592, 129027376349184, 1371482141884416, 14656212306231296, 157369985643577344, 1696975718802522112, 18369603773021552640 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

G.f.: (1-2x-sqrt(1-12x+4x^2))/(4x);

G.f.: 1/(1-2x-2x/(1-2x-2x/(1-2x-2x/(1-... (continued fraction);

a(n) = 2^n*Sum{k=0..n} C(n+k,2k)*A000108(k) = 2^n*A006318(n).

Hankel transform is 8^C(n+1,2). - Philippe Deléham, Feb 04 2009

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.

FORMULA

Conjecture: (n+1)*a(n) +6*(1-2*n)*a(n-1) +4*(n-2)*a(n-2)=0. - R. J. Mathar, Nov 14 2011

a(n) = Sum_{0<=k<=n} A090181(n,k)*2^(n+k). - Philippe Deléham, Nov 27 2011

a(n) ~ sqrt(4+3*sqrt(2))*(6+4*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012

G.f.: 1/Q(0) where Q(k) = 1 + k*(1-2*x) - 2*x - 2*x*(k+1)*(k+2)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013

MAPLE

A156017_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;

for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1], j=0..w-1)) od;

convert(a, list) end: A156017_list(20); # Peter Luschny, Feb 29 2016

MATHEMATICA

CoefficientList[Series[(1-2*x-Sqrt[1-12*x+4*x^2])/(4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

CROSSREFS

Sequence in context: A032349 A215709 A103334 * A000309 A112914 A007846

Adjacent sequences:  A156014 A156015 A156016 * A156018 A156019 A156020

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Feb 01 2009

EXTENSIONS

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 08:41 EST 2016. Contains 278971 sequences.