login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156017 Schroeder paths with two rise colors and two level colors. 3
1, 4, 24, 176, 1440, 12608, 115584, 1095424, 10646016, 105522176, 1062623232, 10840977408, 111811534848, 1163909087232, 12212421230592, 129027376349184, 1371482141884416, 14656212306231296, 157369985643577344 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

G.f.: (1-2x-sqrt(1-12x+4x^2))/(4x);

G.f.: 1/(1-2x-2x/(1-2x-2x/(1-2x-2x/(1-... (continued fraction);

a(n)=2^n*sum{k=0..n, C(n+k,2k)*A000108(k)}=2^n*A006318(n).

Hankel transform is 8^C(n+1,2). [From Philippe Deléham, Feb 04 2009]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092, 2013

FORMULA

Conjecture: (n+1)*a(n) +6*(1-2*n)*a(n-1) +4*(n-2)*a(n-2)=0. - R. J. Mathar, Nov 14 2011

a(n) = Sum_{k, 0<=k<=n} A090181(n,k)*2^(n+k). - Philippe Deléham, Nov 27 2011

a(n) ~ sqrt(4+3*sqrt(2))*(6+4*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012

G.f.: 1/Q(0) where Q(k) = 1 + k*(1-2*x) - 2*x - 2*x*(k+1)*(k+2)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013

MATHEMATICA

CoefficientList[Series[(1-2*x-Sqrt[1-12*x+4*x^2])/(4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

CROSSREFS

Sequence in context: A032349 A215709 A103334 * A000309 A112914 A007846

Adjacent sequences:  A156014 A156015 A156016 * A156018 A156019 A156020

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Feb 01 2009

EXTENSIONS

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 22 03:32 EST 2014. Contains 249800 sequences.