login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032349 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (2,1). 12
1, 4, 24, 172, 1360, 11444, 100520, 911068, 8457504, 80006116, 768464312, 7474561164, 73473471344, 728745517972, 7284188537672, 73301177482172, 742009157612608, 7550599410874820, 77193497566719320, 792498588659426924 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..20.

Emeric Deutsch, Problem 10658, American Math. Monthly, 107, 2000, 368-370.

FORMULA

G.f.: z A^2, where A is the g.f. of A027307.

a(n) = 2*sum(i=0,n-1, (2*n+i-1)!/(i!*(n-i-1)!*(n+i+1)!)). [Vladimir Kruchinin, Oct 18 2011]

Recurrence: n*(2*n-1)*a(n) = (28*n^2-65*n+36)*a(n-1) - (64*n^2-323*n+408)*a(n-2) - 3*(n-4)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012

a(n) ~ sqrt(45*sqrt(5)-100)*((11+5*sqrt(5))/2)^n/(5*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012

G.f. A(x) satisfies: A(x) = 1 + x * ( A(x) + sqrt(A(x)) )^2. - Paul D. Hanna, Jun 11 2016

MATHEMATICA

RecurrenceTable[{n*(2*n-1)*a[n] == (28*n^2-65*n+36)*a[n-1] - (64*n^2-323*n+408)*a[n-2] - 3*(n-4)*(2*n-5)*a[n-3], a[1]==1, a[2]==4, a[3]==24}, a, {n, 20}] (* Vaclav Kotesovec, Oct 08 2012 *)

PROG

(Maxima)

a(n):=2*sum((2*n+i-1)!/(i!*(n-i-1)!*(n+i+1)!), i, 0, n-1); \\ Vladimir Kruchinin, Oct 18 2011

(PARI) vector(30, n, 2*sum(k=0, n-1, (2*n+k-1)!/(k!*(n-k-1)!*(n+k+1)!))) \\ Altug Alkan, Oct 06 2015

(PARI) {a(n) = my(A=1); for(i=1, n, A = 1 + x*(A + sqrt(A +x*O(x^n)))^2); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 11 2016

CROSSREFS

Convolution of A027307 with itself.

Sequence in context: A188913 A052685 A221088 * A215709 A103334 A156017

Adjacent sequences:  A032346 A032347 A032348 * A032350 A032351 A032352

KEYWORD

nonn

AUTHOR

Emeric Deutsch

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 05:18 EST 2016. Contains 278773 sequences.