OFFSET
0,4
COMMENTS
From Antti Karttunen, Sep 23 2015: (Start)
Number of steps needed to reach zero when starting from k = n and repeatedly applying the map that replaces k by k - d(k), where d(k) is the number of divisors of k (A000005).
The original name was: a(n) = 1 + a(n-sigma_0(n)), a(0)=0, sigma_0(n) number of divisors of n.
(End)
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..124340
B. Balamohan, A. Kuznetsov and S. Tanny, On the behavior of a variant of Hofstadter's Q-sequence, J. Integer Sequences, Vol. 10 (2007), #07.7.1.
Antti Karttunen, Graph plotted with OEIS Plot script up to n=10000
John A. Pelesko, Generalizing the Conway-Hofstadter $10,000 Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.5.
FORMULA
MAPLE
with(numtheory): a := proc (n) if n = 0 then 0 else 1+a(n-tau(n)) end if end proc: seq(a(n), n = 0 .. 90); # Emeric Deutsch, Jan 26 2009
MATHEMATICA
a[0] = 0; a[n_] := a[n] = 1 + a[n - DivisorSigma[0, n]]; Table[a@n, {n, 0, 82}] (* Michael De Vlieger, Sep 24 2015 *)
PROG
(PARI)
uplim = 110880; \\ = A002182(30).
v155043 = vector(uplim);
v155043[1] = 1; v155043[2] = 1;
for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]);
A155043 = n -> if(!n, n, v155043[n]);
for(n=0, uplim, write("b155043.txt", n, " ", A155043(n)));
\\ Antti Karttunen, Sep 23 2015
;; Antti Karttunen, Sep 23 2015
(Haskell)
import Data.List (genericIndex)
a155043 n = genericIndex a155043_list n
a155043_list = 0 : map ((+ 1) . a155043) a049820_list
-- Reinhard Zumkeller, Nov 27 2015
(Python)
from sympy import divisor_count as d
def a(n): return 0 if n==0 else 1 + a(n - d(n))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 03 2017
CROSSREFS
Cf. A261089 (positions of records, i.e., the first occurrence of n), A262503 (the last occurrence), A262505 (their difference), A263082.
Cf. A262518, A262519 (bisections, compare their scatter plots), A262521 (where the latter is less than the former).
Cf. A262507 (number of times n occurs in total), A262508 (values occurring only once), A262509 (their indices).
Cf. A263265 (nonnegative integers arranged by the magnitude of a(n)).
KEYWORD
nonn,look
AUTHOR
Ctibor O. Zizka, Jan 19 2009
EXTENSIONS
Extended by Emeric Deutsch, Jan 26 2009
Name edited by Antti Karttunen, Sep 23 2015
STATUS
approved