The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155043 a(0)=0; for n >= 1, a(n) = 1 + a(n-d(n)), where d(n) is the number of divisors of n (A000005). 54
 0, 1, 1, 2, 2, 3, 2, 4, 3, 3, 3, 4, 3, 5, 4, 5, 5, 6, 4, 7, 5, 7, 5, 8, 6, 6, 6, 9, 6, 10, 6, 11, 7, 11, 7, 12, 10, 13, 8, 13, 8, 14, 8, 15, 9, 14, 9, 15, 9, 10, 10, 16, 10, 17, 10, 17, 10, 18, 11, 19, 10, 20, 12, 19, 19, 21, 12, 22, 13, 22, 13, 23, 11, 24, 14, 23, 14, 25, 14, 26, 14, 15, 15 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS From Antti Karttunen, Sep 23 2015: (Start) Number of steps needed to reach zero when starting from k = n and repeatedly applying the map that replaces k by k - d(k), where d(k) is the number of divisors of k (A000005). The original name was: a(n) = 1 + a(n-sigma_0(n)), a(0)=0, sigma_0(n) number of divisors of n. (End) LINKS Antti Karttunen, Table of n, a(n) for n = 0..124340 B. Balamohan, A. Kuznetsov and S. Tanny, On the behavior of a variant of Hofstadter's Q-sequence, J. Integer Sequences, Vol. 10 (2007), #07.7.1. Antti Karttunen, Graph plotted with OEIS Plot script up to n=10000 John A. Pelesko, Generalizing the Conway-Hofstadter \$10,000 Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.5. FORMULA From Antti Karttunen, Sep 23 2015 & Nov 26 2015: (Start) a(0) = 0; for n >= 1, a(n) = 1 + a(A049820(n)). a(n) = A262676(n) + A262677(n). - Oct 03 2015. Other identities. For all n >= 0: a(A259934(n)) = a(A261089(n)) = a(A262503(n)) = n. [The sequence works as a left inverse for sequences A259934, A261089 and A262503.] a(n) = A262904(n) + A263254(n). a(n) = A263270(A263266(n)). A263265(a(n), A263259(n)) = n. (End) MAPLE with(numtheory): a := proc (n) if n = 0 then 0 else 1+a(n-tau(n)) end if end proc: seq(a(n), n = 0 .. 90); # Emeric Deutsch, Jan 26 2009 MATHEMATICA a[0] = 0; a[n_] := a[n] = 1 + a[n - DivisorSigma[0, n]]; Table[a@n, {n, 0, 82}] (* Michael De Vlieger, Sep 24 2015 *) PROG (PARI) uplim = 110880; \\ = A002182(30). v155043 = vector(uplim); v155043[1] = 1; v155043[2] = 1; for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]); A155043 = n -> if(!n, n, v155043[n]); for(n=0, uplim, write("b155043.txt", n, " ", A155043(n))); \\ Antti Karttunen, Sep 23 2015 (Scheme) (definec (A155043 n) (if (zero? n) n (+ 1 (A155043 (A049820 n))))) ;; Antti Karttunen, Sep 23 2015 (Haskell) import Data.List (genericIndex) a155043 n = genericIndex a155043_list n a155043_list = 0 : map ((+ 1) . a155043) a049820_list -- Reinhard Zumkeller, Nov 27 2015 (Python) from sympy import divisor_count as d def a(n): return 0 if n==0 else 1 + a(n - d(n)) print [a(n) for n in range(101)] # Indranil Ghosh, Jun 03 2017 CROSSREFS Cf. A000005, A049820, A060990, A259934. Sum of A262676 and A262677. Cf. A261089 (positions of records, i.e., the first occurrence of n), A262503 (the last occurrence), A262505 (their difference), A263082. Cf. A262518, A262519 (bisections, compare their scatter plots), A262521 (where the latter is less than the former). Cf. A261085 (computed for primes), A261088 (for squares). Cf. A262507 (number of times n occurs in total), A262508 (values occurring only once), A262509 (their indices). Cf. A263265 (nonnegative integers arranged by the magnitude of a(n)). Cf. also A263077, A263078, A263079, A263080. Cf. also A261104, A262680, A262904, A263254, A263259, A263260, A263266, A263270. Cf. also A004001, A005185. Cf. A264893 (first differences), A264898 (where repeating values occur). Sequence in context: A263297 A163870 A327664 * A065770 A297113 A086375 Adjacent sequences:  A155040 A155041 A155042 * A155044 A155045 A155046 KEYWORD nonn,look AUTHOR Ctibor O. Zizka, Jan 19 2009 EXTENSIONS Extended by Emeric Deutsch, Jan 26 2009 Name edited by Antti Karttunen, Sep 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 16:22 EST 2020. Contains 331114 sequences. (Running on oeis4.)