login
A263077
a(n) = greatest k where A155043(k) < A155043(n).
7
0, 0, 2, 2, 6, 2, 12, 6, 6, 6, 12, 6, 18, 12, 18, 18, 22, 12, 30, 18, 30, 18, 34, 22, 22, 22, 42, 22, 48, 22, 60, 30, 60, 30, 72, 48, 84, 34, 84, 34, 96, 34, 108, 42, 96, 42, 108, 42, 48, 48, 120, 48, 132, 48, 132, 48, 140, 60, 140, 48, 140, 72, 140, 140, 140, 72, 140, 84, 140, 84, 140, 60, 140, 96, 140, 96, 150, 96, 156, 96, 108, 108, 120, 72, 120, 120, 132, 108, 140, 108, 140, 132, 140, 120, 140, 84
OFFSET
1,3
LINKS
FORMULA
a(n) = A263082(A155043(n)-1).
MATHEMATICA
a[0] = 0; a[n_] := a[n] = 1 + a[n - DivisorSigma[0, n]]; Table[k = 3 n;
While[a@ k >= a@ n, k--]; k, {n, 96}] (* Michael De Vlieger, Oct 13 2015 *)
PROG
(PARI)
allocatemem((2^31)+(2^30));
uplim1 = 36756720 + 640; \\ = A002182(53) + A002183(53).
uplim2 = 36756720; \\ = A002182(53).
uplim3 = 32432400; \\ = A002182(52). Really just some Ad Hoc value smaller than above.
v155043 = vector(uplim1);
vother = vector(uplim3); \\ Contains A262503 and A263082 in succession.
v155043[1] = 1; v155043[2] = 1;
for(i=3, uplim1, v155043[i] = 1 + v155043[i-numdiv(i)]; if(!(i%1048576), print1(i, ", ")));
A155043 = n -> if(!n, n, v155043[n]);
maxlen = 0; for(i=1, uplim2, len = v155043[i]; vother[len] = i; maxlen = max(maxlen, len); if(!(i%1048576), print1(i, ", "))); \\ First it will be A262503.
print("uplim2=", uplim2, " uplim3=", uplim3, " maxlen=", maxlen);
\\ Then we convert it to A263082:
m = 0; for(i=1, maxlen, m = max(m, vother[i]); vother[i] = m; if(!(i%1048576), print1(i, ", ")));
A263082 = n -> if(!n, n, vother[n]);
A263077 = n -> A263082(A155043(n)-1);
\\ Finally we can compute A263077:
for(i=1, uplim3, write("b263077.txt", i, " ", A263077(i)); );
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 09 2015
STATUS
approved