

A153251


Coefficients of the sixth order mock theta function phi_{}(q).


1



0, 1, 3, 5, 8, 14, 22, 33, 51, 74, 105, 151, 210, 289, 398, 537, 719, 960, 1267, 1660, 2167, 2807, 3614, 4638, 5915, 7507, 9498, 11957, 14994, 18744, 23337, 28959, 35834, 44192, 54338, 66643, 81499, 99407, 120969, 146836, 177820
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


REFERENCES

B.C. Berndt and S.H. Chan, Sixth order mock theta functions, Adv. Math. 216 (2007), 771786.


LINKS

Table of n, a(n) for n=0..40.
B.C. Berndt and S.H. Chan, Sixth order mock theta functions, Adv. Math. 216 (2007), 771786.


FORMULA

G.f.: Sum_{n >= 1} q^n (1+q)(1+q^2)...(1+q^(2n1))/((1q)(1q^3)...(1q^(2n1))).


PROG

(PARI) lista(nn) = q = qq + O(qq^nn); gf = sum(n = 1, nn, q^n * prod(k = 1, 2*n1, 1 + q^k) / prod(k = 1, n, 1  q^(2*k1))); concat(0, Vec(gf)) \\ Michel Marcus, Jun 18 2013


CROSSREFS

Cf A153252.
Other '6th order' mock theta functions are at A053268, A053269, A053270, A053271, A053272, A053273, A053274.
Sequence in context: A141739 A094007 A159914 * A229167 A245968 A109022
Adjacent sequences: A153248 A153249 A153250 * A153252 A153253 A153254


KEYWORD

nonn


AUTHOR

Jeremy Lovejoy, Dec 21 2008


STATUS

approved



