

A153252


Coefficients of the sixth order mock theta function psi_{}(q).


1



0, 1, 2, 4, 7, 12, 19, 29, 44, 65, 94, 134, 188, 261, 358, 486, 654, 872, 1155, 1519, 1984, 2576, 3325, 4270, 5456, 6939, 8786, 11077, 13912, 17406, 21700, 26961, 33388, 41221, 50739, 62278, 76232, 93067, 113336, 137684, 166873
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


REFERENCES

B. C. Berndt and S. H. Chan, Sixth order mock theta functions, Adv. Math. 216 (2007), 771786.


LINKS

Table of n, a(n) for n=0..40.
B. C. Berndt and S. H. Chan, Sixth order mock theta functions, Adv. Math. 216 (2007), 771786.


FORMULA

G.f.: Sum_{n >= 1} q^n(1+q)(1+q^2)...(1+q^(2n2))/((1q)(1q^3)...(1q^(2n1))).


PROG

(PARI) lista(nn) = q = qq + O(qq^nn); gf = sum(n = 1, nn, q^n * prod(k = 1, 2*n2, 1 + q^k) / prod(k = 1, n, 1  q^(2*k1))); concat(0, Vec(gf)) \\Michel Marcus, Jun 18 2013


CROSSREFS

Cf A153251.
Other '6th order' mock theta functions are at A053268, A053269, A053270, A053271, A053272, A053273, A053274.
Sequence in context: A002622 A035301 A035297 * A079719 A036439 A175965
Adjacent sequences: A153249 A153250 A153251 * A153253 A153254 A153255


KEYWORD

nonn


AUTHOR

Jeremy Lovejoy, Dec 21 2008


STATUS

approved



