%I #20 Jan 08 2024 16:29:00
%S 0,1,3,5,8,14,22,33,51,74,105,151,210,289,398,537,719,960,1267,1660,
%T 2167,2807,3614,4638,5915,7507,9498,11957,14994,18744,23337,28959,
%U 35834,44192,54338,66643,81499,99407,120969,146836,177820
%N Coefficients of the sixth-order mock theta function phi_{-}(q).
%H Vaclav Kotesovec, <a href="/A153251/b153251.txt">Table of n, a(n) for n = 0..1000</a>
%H B.C. Berndt and S.H. Chan, <a href="http://dx.doi.org/10.1016/j.aim.2007.06.004">Sixth order mock theta functions</a>, Adv. Math. 216 (2007), 771-786.
%F G.f.: Sum_{n >= 1} q^n (1+q)(1+q^2)...(1+q^(2n-1))/((1-q)(1-q^3)...(1-q^(2n-1))).
%F a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/2)*sqrt(3*n)). - _Vaclav Kotesovec_, Jun 13 2019
%o (PARI) lista(nn) = q = qq + O(qq^nn); gf = sum(n = 1, nn, q^n * prod(k = 1, 2*n-1, 1 + q^k) / prod(k = 1, n, 1 - q^(2*k-1))); concat(0, Vec(gf)) \\ _Michel Marcus_, Jun 18 2013
%Y Cf. A153252.
%Y Other '6th-order' mock theta functions are at A053268, A053269, A053270, A053271, A053272, A053273, A053274.
%K nonn
%O 0,3
%A _Jeremy Lovejoy_, Dec 21 2008