login
A053271
Coefficients of the '6th-order' mock theta function sigma(q).
9
0, 1, 1, 2, 3, 3, 5, 7, 8, 11, 14, 17, 22, 28, 33, 41, 51, 60, 74, 89, 105, 127, 151, 177, 210, 248, 289, 340, 398, 461, 537, 624, 719, 832, 960, 1101, 1267, 1453, 1660, 1899, 2167, 2465, 2807, 3190, 3614, 4097, 4638, 5237, 5915, 6671, 7507, 8450, 9498
OFFSET
0,4
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 13.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
George E. Andrews and Dean Hickerson, Ramanujan's "lost" notebook VII: The sixth order mock theta functions, Advances in Mathematics, 89 (1991) 60-105.
FORMULA
G.f.: sigma(q) = Sum_{n >= 0} q^((n+1)(n+2)/2) (1+q)(1+q^2)...(1+q^n)/((1-q)(1-q^3)...(1-q^(2n+1))).
a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(3*n)). - Vaclav Kotesovec, Jun 12 2019
MATHEMATICA
Series[Sum[q^((n+1)(n+2)/2) Product[1+q^k, {k, 1, n}]/Product[1-q^k, {k, 1, 2n+1, 2}], {n, 0, 12}], {q, 0, 100}]
nmax = 100; CoefficientList[Series[Sum[x^((k+1)*(k+2)/2) * Product[1+x^j, {j, 1, k}]/Product[1-x^j, {j, 1, 2*k+1, 2}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)
CROSSREFS
Other '6th-order' mock theta functions are at A053268, A053269, A053270, A053272, A053273, A053274.
Sequence in context: A081217 A335139 A320036 * A035360 A377435 A027587
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved