login
A027587
Sequence satisfies T^2(a)=a, where T is defined below.
0
1, 2, 3, 3, 5, 7, 8, 12, 14, 17, 23, 26, 33, 40, 46, 56, 66, 76, 91, 105, 121, 141, 161, 184, 212, 241, 273, 312, 349, 396, 447, 499, 563, 628, 699, 784, 869, 966, 1075, 1185, 1314, 1450, 1597, 1761, 1937, 2125, 2334, 2556, 2794, 3060, 3339, 3642, 3974, 4321
OFFSET
0,2
REFERENCES
S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
FORMULA
Define T:a->b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that even parts do not occur more than once.
CROSSREFS
Sequence in context: A320036 A053271 A035360 * A363300 A030779 A030729
KEYWORD
nonn,eigen
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Nov 09 2019
STATUS
approved