login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053270 Coefficients of the '6th-order' mock theta function rho(q). 11
1, 2, 3, 4, 6, 8, 11, 14, 18, 24, 30, 38, 47, 58, 72, 88, 108, 130, 156, 188, 225, 268, 318, 376, 444, 522, 612, 716, 834, 972, 1129, 1308, 1512, 1744, 2010, 2310, 2652, 3038, 3474, 3968, 4524, 5152, 5857, 6650, 7542, 8540, 9660, 10912, 12312, 13878 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 3, 13

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)

George E. Andrews and Dean Hickerson, Ramanujan's "lost" notebook VII: The sixth order mock theta functions, Advances in Mathematics, 89 (1991) 60-105.

FORMULA

G.f.: rho(q) = Sum_{n >= 0} ( q^(n(n+1)/2) *(1+q)*(1+q^2)...(1+q^n)/((1-q)*(1-q^3)...(1-q^(2n+1))) ).

a(n) ~ exp(Pi*sqrt(n/3)) / (2*sqrt(3*n)). - Vaclav Kotesovec, Jun 12 2019

MATHEMATICA

Series[Sum[q^(n(n+1)/2) Product[1+q^k, {k, 1, n}]/Product[1-q^k, {k, 1, 2n+1, 2}], {n, 0, 13}], {q, 0, 100}]

nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2) * Product[1+x^j, {j, 1, k}]/Product[1-x^j, {j, 1, 2*k+1, 2}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)

CROSSREFS

Other '6th-order' mock theta functions are at A053268, A053269, A053271, A053272, A053273, A053274.

Sequence in context: A143611 A279075 A062464 * A261154 A233693 A003412

Adjacent sequences:  A053267 A053268 A053269 * A053271 A053272 A053273

KEYWORD

nonn,easy

AUTHOR

Dean Hickerson, Dec 19 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 00:36 EDT 2020. Contains 335762 sequences. (Running on oeis4.)