login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053267 Coefficients of the '5th order' mock theta function Psi(q). 14
0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 4, 4, 5, 5, 7, 6, 8, 8, 9, 9, 12, 11, 14, 14, 16, 16, 20, 19, 23, 24, 27, 27, 32, 32, 37, 38, 43, 44, 51, 51, 58, 61, 67, 69, 78, 80, 89, 93, 102, 106, 118, 121, 134, 140, 153, 159, 175, 181, 198, 207, 224, 234, 256, 265, 288 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

REFERENCES

George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255

Dean Hickerson, A proof of the mock theta conjectures, Inventiones Mathematicae, 94 (1988) 639-660

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 18, 20

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)

FORMULA

G.f.: Psi(q) = -1 + sum for n >= 0 of q^(5n^2)/((1-q^2)(1-q^3)(1-q^7)(1-q^8)...(1-q^(5n+2))).

a(n) ~ exp(Pi*sqrt(2*n/15)) / (5^(3/4)*sqrt(2*phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019

MATHEMATICA

Series[Sum[q^(5n^2)/Product[1-q^Abs[5k+2], {k, -n, n}], {n, 0, 4}], {q, 0, 100}]-1

nmax = 100; CoefficientList[Series[-1 + Sum[x^(5*k^2)/ Product[1-x^Abs[5*j+2], {j, -k, k}], {k, 0, Floor[Sqrt[nmax/5]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)

CROSSREFS

Other '5th order' mock theta functions are at A053256, A053257, A053258, A053259, A053260, A053261, A053262, A053263, A053264, A053265, A053266.

Sequence in context: A051275 A025799 A282537 * A058768 A127682 A127685

Adjacent sequences:  A053264 A053265 A053266 * A053268 A053269 A053270

KEYWORD

nonn,easy

AUTHOR

Dean Hickerson, Dec 19 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 20:42 EDT 2020. Contains 334710 sequences. (Running on oeis4.)