login
A147703
Triangle [1,1,1,0,0,0,...] DELTA [1,0,0,0,...] with Deléham DELTA defined in A084938.
28
1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 13, 27, 20, 7, 1, 34, 80, 73, 35, 9, 1, 89, 234, 252, 151, 54, 11, 1, 233, 677, 837, 597, 269, 77, 13, 1, 610, 1941, 2702, 2225, 1199, 435, 104, 15, 1, 1597, 5523, 8533, 7943, 4956, 2158, 657, 135, 17, 1
OFFSET
0,4
COMMENTS
Equal to A062110*A007318 when A062110 is regarded as a triangle read by rows.
LINKS
Indranil Ghosh, Rows 0..100, flattened
FORMULA
Riordan array ((1-2x)/(1-3x+x^2), x(1-x)/(1-3x+x^2)).
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Dec 01 2008
G.f.: (1-2*x)/(1-(3+y)*x+(1+y)*x^2). - Philippe Deléham, Nov 26 2011
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), for n > 1. - Philippe Deléham, Feb 12 2012
The Riordan square of the odd indexed Fibonacci numbers A001519. - Peter Luschny, Jan 26 2020
EXAMPLE
Triangle begins
1;
1, 1;
2, 3, 1;
5, 9, 5, 1;
13, 27, 20, 7, 1;
34, 80, 73, 35, 9, 1;
89, 234, 252, 151, 54, 11, 1;
MAPLE
# The function RiordanSquare is defined in A321620:
RiordanSquare(1 / (1 - x / (1 - x / (1 - x))), 10); # Peter Luschny, Jan 26 2020
MATHEMATICA
nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 2*x)/(1 - (3 + y)*x + (1 + y)*x^2), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 11 2017 *)
CROSSREFS
Row sums are A006012. Diagonal sums are A147704.
Sequence in context: A293287 A236843 A055905 * A147747 A039599 A154380
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Nov 10 2008
STATUS
approved