OFFSET
0,5
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(-q) * f(q^5) / f(-q^4) in powers of q where f(), chi() are Ramanujan theta functions.
Euler transform of period 20 sequence [ -1, 0, -1, 1, 0, 0, -1, 1, -1, -2, -1, 1, -1, 0, 0, 1, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = (5/4)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A147699.
EXAMPLE
G.f. = 1 - q - q^3 + 2*q^4 - q^5 - 2*q^7 + 4*q^8 - 3*q^9 - 3*q^11 + 8*q^12 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -q^5] QPochhammer[ q, q^2] / QPochhammer[ q^4], {q, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^10 + A)^3 / (eta(x^2 + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^20 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 10 2008
STATUS
approved