login
A143372
Expansion of 1/(1 +x -2*x^2 -x^3 -x^4 -3*x^5 +2*x^6 +2*x^7 +3*x^8 +2*x^9 -3*x^10 -7*x^11 -3*x^12 -5*x^13).
5
1, -1, 3, -4, 10, -13, 27, -38, 70, -99, 173, -242, 400, -548, 869, -1136, 1718, -2088, 2936, -3033, 3615, -1763, -513, 10082, -24172, 58958, -111749, 220258, -385285, 693194, -1157154, 1970073, -3175964, 5190188, -8114526, 12799806, -19405803, 29552880, -43266292, 63282734, -88506070, 122514819, -159419554
OFFSET
0,3
REFERENCES
Claude Shannon and Warren Weaver, A Mathematical Theory of Communication, University of Illinois Press, Chicago, 1963, pages 37 - 38.
LINKS
FORMULA
G.f.: x^13 * p(1/x), where p(y) = -5 -3*y -7*y^2 -3*y^3 +2*y^4 +3*y^5 +2*y^6 +2*y^7 -3*y^8 -y^9 -y^10 -2*y^11 +y^12 +y^13.
G.f.: 1/(1 +x -2*x^2 -x^3 -x^4 -3*x^5 +2*x^6 +2*x^7 +3*x^8 +2*x^9 -3*x^10 -7*x^11 -3*x^12 -5*x^13). - G. C. Greubel, Feb 08 2021
MATHEMATICA
CoefficientList[Series[1/(1 +x -2*x^2 -x^3 -x^4 -3*x^5 +2*x^6 +2*x^7 +3*x^8 +2*x^9 -3*x^10 -7*x^11 -3*x^12 -5*x^13), {x, 0, 50}], x]
PROG
(Sage)
def A143372_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1 +x -2*x^2 -x^3 -x^4 -3*x^5 +2*x^6 +2*x^7 +3*x^8 +2*x^9 -3*x^10 -7*x^11 -3*x^12 -5*x^13) ).list()
A143372_list(50) # G. C. Greubel, Feb 08 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 50);
Coefficients(R!( 1/(1 +x -2*x^2 -x^3 -x^4 -3*x^5 +2*x^6 +2*x^7 +3*x^8 +2*x^9 -3*x^10 -7*x^11 -3*x^12 -5*x^13) )); // G. C. Greubel, Feb 08 2021
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, Feb 08 2021
STATUS
approved