OFFSET
0,3
REFERENCES
Claude Shannon and Warren Weaver, A Mathematical Theory of Communication, University of Illinois Press, Chicago, 1963, pages 37 - 38.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-1,2,1,1,3,-2,-2,-3,-2,3,7,3,5).
FORMULA
G.f.: x^13 * p(1/x), where p(y) = -5 -3*y -7*y^2 -3*y^3 +2*y^4 +3*y^5 +2*y^6 +2*y^7 -3*y^8 -y^9 -y^10 -2*y^11 +y^12 +y^13.
G.f.: 1/(1 +x -2*x^2 -x^3 -x^4 -3*x^5 +2*x^6 +2*x^7 +3*x^8 +2*x^9 -3*x^10 -7*x^11 -3*x^12 -5*x^13). - G. C. Greubel, Feb 08 2021
MATHEMATICA
CoefficientList[Series[1/(1 +x -2*x^2 -x^3 -x^4 -3*x^5 +2*x^6 +2*x^7 +3*x^8 +2*x^9 -3*x^10 -7*x^11 -3*x^12 -5*x^13), {x, 0, 50}], x]
PROG
(Sage)
def A143372_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1 +x -2*x^2 -x^3 -x^4 -3*x^5 +2*x^6 +2*x^7 +3*x^8 +2*x^9 -3*x^10 -7*x^11 -3*x^12 -5*x^13) ).list()
A143372_list(50) # G. C. Greubel, Feb 08 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 50);
Coefficients(R!( 1/(1 +x -2*x^2 -x^3 -x^4 -3*x^5 +2*x^6 +2*x^7 +3*x^8 +2*x^9 -3*x^10 -7*x^11 -3*x^12 -5*x^13) )); // G. C. Greubel, Feb 08 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 22 2008
EXTENSIONS
Edited by G. C. Greubel, Feb 08 2021
STATUS
approved