The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302347 a(n) = Sum of (Y(2,p)^2) over the partitions p of n, Y(2,p)= number of part sizes with multiplicity 2 or greater in p 3
 0, 0, 1, 1, 3, 4, 10, 13, 25, 34, 59, 80, 127, 172, 260, 349, 505, 673, 946, 1248, 1711, 2238, 3010, 3902, 5162, 6637, 8663, 11051, 14253, 18051, 23047, 28988, 36677, 45840, 57538, 71485, 89082, 110062, 136269, 167487, 206138, 252132, 308640, 375777, 457698 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This sequence is part of the contribution to the b^2 term of C_{1-b,2}(q) for(1-b,2)-colored partitions - partitions in which we can label parts any of an indeterminate 1-b colors, but are restricted to using only 2 of the colors per part size. This formula is known to match the Han/Nekrasov-Okounkov hooklength formula truncated at hooks of size two up to the linear term in b. It is of interest to enumerate and determine specific characteristics of partitions of n, considering each partition individually. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..2000 Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, arXiv:0805.1398 [math.CO], 2008. Guo-Niu Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Annales de l'institut Fourier, Tome 60 (2010) no. 1, pp. 1-29. W. J. Keith, Restricted k-color partitions, Ramanujan Journal (2016) 40: 71. FORMULA a(n) = Sum_{p in P(n)} (H(2,p)^2 + 2*A024786 - 2*A024788), where P(n) is the set of partitions of n, and H(2,p) is the hooks of length 2 in partition p. G.f: (q^2*(1+q^4))/((1-q^2)*(1-q^4))*Product_{j>=1} 1/(1-q^j). a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (8*Pi^2). - Vaclav Kotesovec, May 22 2018 EXAMPLE For a(6), we sum over partitions of six. For each partition, we count 1 for each part which appears more than once, then square the total in each partition. 6............0^2 = 0 5,1..........0^2 = 0 4,2..........0^2 = 0 4,1,1........1^2 = 1 3,3..........1^2 = 1 3,2,1........0^2 = 0 3,1,1,1......1^2 = 1 2,2,2........1^2 = 1 2,2,1,1......2^2 = 4 2,1,1,1,1....1^2 = 1 1,1,1,1,1,1..1^2 = 1 -------------------- Total.............10 MAPLE b:= proc(n, i, p) option remember; `if`(n=0 or i=1, (       `if`(n>1, 1, 0)+p)^2, add(b(n-i*j, i-1,       `if`(j>1, 1, 0)+p), j=0..n/i))     end: a:= n-> b(n\$2, 0): seq(a(n), n=0..60);  # Alois P. Heinz, Apr 05 2018 MATHEMATICA Array[Total[Count[Split@ #, _?(Length@ # > 1 &)]^2 & /@ IntegerPartitions[#]] &, 44] (* Michael De Vlieger, Apr 07 2018 *) PROG def sum_square_freqs_greater_one(freq_list):     tot = 0     for f in freq_list:         count = 0         for i in f:             if i > 1:                 count += 1         tot += count*count     return tot def frequencies(partition, n):     tot = 0     freq_list = []     i = 0     for p in partition:         freq = [0 for i in range(n+1)]         for i in p:             freq[i] += 1         for f in freq:             if f == 0:                 tot += 1         freq_list.append(freq)     return freq_list CROSSREFS Cf. A024786, A024788, A302300. Sequence in context: A031367 A073443 A257494 * A092119 A143372 A035594 Adjacent sequences:  A302344 A302345 A302346 * A302348 A302349 A302350 KEYWORD nonn AUTHOR Emily Anible, Apr 05 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 23:50 EDT 2020. Contains 334612 sequences. (Running on oeis4.)