This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092119 EULER transform of A001511. 5
 1, 1, 3, 4, 10, 13, 26, 35, 66, 88, 150, 202, 331, 442, 688, 919, 1394, 1848, 2716, 3590, 5174, 6796, 9589, 12542, 17440, 22680, 31055, 40208, 54420, 70096, 93772, 120256, 159380, 203436, 267142, 339573, 442478, 560050, 724302, 913198, 1173375, 1473622 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Gary W. Adamson, Feb 11 2010: (Start) Given A000041, P(x) = A(x)/A(x^2) with P(x) = (1+x+2x^2+3x^3+5x^4+7x^5 + ...) A(x) = (1+x+3x^2+4x^3+10x^4+13x^5 + ...), A(x^2) = (1+x^2+3x^4+4x^6+10x^8+ ...), where A092119 = (1, 1, 3, 4, 10,...) = Euler transform of the ruler sequence, A001511. (End) Let M = triangle A173238 as an infinite lower triangular matrix. Then A092119 = Lim_{n->inf} M^n. Let P(x) = polcoeff A000041 = (1 + x + 2x^2 + 3x^3 + ...), and A(x) = polcoeff A092119. Then P(x) = A(x) / A(x^2), an example of a conjectured infinite set of operations (Cf. A173238). - Gary W. Adamson, Feb 13 2010 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 N. J. A. Sloane, Transforms FORMULA G.f.: 1/prod(k>=0, P(x^(2^k)) where P(x)=prod(k>=1, 1-x^k ). - Joerg Arndt, Jun 21 2011 PROG (PARI)  N=66; x='x+O('x^N); /* that many terms */ gf=1/prod(e=0, ceil(log(N)/log(2)), eta(x^(2^e))); Vec(gf) /* show terms */ /* Joerg Arndt, Jun 21 2011 */ CROSSREFS Cf. A000041. - Gary W. Adamson, Feb 11 2010 Cf. A000041, A092119. - Gary W. Adamson, Feb 13 2010 Sequence in context: A073443 A257494 A302347 * A143372 A035594 A167273 Adjacent sequences:  A092116 A092117 A092118 * A092120 A092121 A092122 KEYWORD nonn AUTHOR Vladeta Jovovic, Mar 29 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 14:22 EST 2018. Contains 318229 sequences. (Running on oeis4.)