|
|
A143351
|
|
Expansion of x/(1 -x^2 -x^4 -x^7 -x^8 -x^9 -x^10).
|
|
5
|
|
|
1, 0, 1, 0, 2, 0, 3, 1, 6, 3, 11, 7, 20, 15, 37, 32, 70, 68, 134, 141, 257, 288, 495, 583, 959, 1175, 1867, 2358, 3646, 4714, 7136, 9397, 13994, 18695, 27489, 37138, 54068, 73687, 106450, 146066, 209740, 289328, 413506, 572784, 815628, 1133455, 1609405
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
REFERENCES
|
Claude Shannon and Warren Weaver, A Mathematical Theory of Communication, University of Illinois Press, Chicago, 1963, pages 37 - 38.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,0,1,1,1,1).
|
|
FORMULA
|
a(n) = a(n-2) +a(n-4) +a(n-7) +a(n-8) +a(n-9) +a(n-10).
|
|
MATHEMATICA
|
Rest@CoefficientList[Series[x/(1-x^2-x^4-x^7-x^8-x^9-x^10), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 1, 0, 1, 0, 0, 1, 1, 1, 1}, {1, 0, 1, 0, 2, 0, 3, 1, 6, 3}, 60] (* Harvey P. Dale, Mar 05 2016 *)
|
|
PROG
|
(Sage)
def A143351_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x/(1-x^2-x^4-x^7-x^8-x^9-x^10) ).list()
a=A143351_list(61); a[1:] # G. C. Greubel, Feb 08 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 60);
Coefficients(R!( x/(1-x^2-x^4-x^7-x^8-x^9-x^10) )); // G. C. Greubel, Feb 08 2021
|
|
CROSSREFS
|
Cf. A122762, A143372, A143373, A143375.
Sequence in context: A006209 A005307 A340385 * A241644 A241640 A158449
Adjacent sequences: A143348 A143349 A143350 * A143352 A143353 A143354
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Roger L. Bagula and Gary W. Adamson, Oct 22 2008
|
|
EXTENSIONS
|
More terms from Harvey P. Dale, Mar 05 2016
Edited by G. C. Greubel, Feb 08 2021
|
|
STATUS
|
approved
|
|
|
|