OFFSET
0,2
COMMENTS
Equals A007318^9 * [1, 0, 9, 0, 81, 0, 729, ...]. - Gary W. Adamson, Oct 23 2008
LINKS
Index entries for linear recurrences with constant coefficients, signature (18, -72).
FORMULA
From Philippe Deléham, Oct 18 2008: (Start)
a(n) = 18*a(n-1) - 72*a(n-2).
a(n) = 6^n*(2^n+1)/2.
G.f.: (1-9x)/(1-18x+72x^2). (End)
From R. J. Mathar, Oct 21 2008: (Start)
a(n) = (12^n + 6^n)/2.
G.f.: (1-9x)/((1-12x)(1-6x)). (End)
a(n) = 3^n*A007582(n) = (6^n+12^n)/2 = A000051(n)*A000079(n)*A000244(n)/2. - M. F. Hasler, Oct 22 2008
A007318^9 * [1, 0, 9, 0, 81, 0, 729, ...] produces this sequence. - Gary W. Adamson, Oct 23 2008
a(n) = Sum_{k=0..n} A098158(n,k)*9^k. - Philippe Deléham, Oct 23 2008
PROG
(PARI) A143079(n)=3^n*(1+1<<n)<<(n-1) \\ M. F. Hasler, Oct 22 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Oct 15 2008
EXTENSIONS
Extended by R. J. Mathar and M. F. Hasler, Oct 21 2008
STATUS
approved