login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233829 a(n) = 3*binomial(6*n+9,n)/(2*n+3). 4
1, 9, 90, 975, 11160, 132867, 1629012, 20430900, 260907075, 3381098545, 44352058608, 587787511779, 7858257798300, 105855415586550, 1435361957277480, 19576154604317304, 268364706225271110, 3695862686045572350, 51108790709588823150 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=9.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.

Thomas A. Dowling, Catalan Numbers Chapter 7

Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.

FORMULA

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=6, r=9.

From Ilya Gutkovskiy, Sep 14 2018: (Start)

E.g.f.: 5F5(3/2,5/3,11/6,13/6,7/3; 1,11/5,12/5,13/5,14/5; 46656*x/3125).

a(n) ~ 3^(6*n+21/2)*4^(3*n+4)/(sqrt(Pi)*5^(5*n+19/2)*n^(3/2)). (End)

MATHEMATICA

Table[3 Binomial[6 n + 9, n]/(2 n + 3), {n, 0, 30}]

PROG

(PARI) a(n) = 3*binomial(6*n+9, n)/(2*n+3);

(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(2/3))^9+x*O(x^n)); polcoeff(B, n)}

(MAGMA) [3*Binomial(6*n+9, n)/(2*n+3): n in [0..30]];

CROSSREFS

Cf. A000108, A002295, A212071, A212072, A212073, A130564, A233743, A233827, A233830.

Sequence in context: A098399 A264914 A143079 * A165324 A082367 A276506

Adjacent sequences:  A233826 A233827 A233828 * A233830 A233831 A233832

KEYWORD

nonn

AUTHOR

Tim Fulford, Dec 16 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 02:07 EST 2019. Contains 329242 sequences. (Running on oeis4.)