OFFSET
1,3
COMMENTS
The root that balances the Cartan matrices characteristic polynomial roots is: x=-Trace[Cartan_Matrix];
Sum[x /. NSolve[p[x] == 0, x][[n]], {n, 1, 12}]=-3.552713678800501*10^(-15).
FORMULA
p(x)=1/(-1 + 274 x^2 - 3480 x^3 + 21205 x^4 - 76696 x^5 + 175891x^6 - 259324 x^7 + 240551 x^8 - 131824 x^9 + 37101 x^10 - 3676 x^11 - 44 x^12); p(x)=Sum[a(n)*x^n,{n,0,Infinity}]; a(n) output.
MATHEMATICA
Clear[m11, p, f]; m11 = {{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {-1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, -1, 2, -1, 0, 0, 0, 0, 0, 0, -1}, {0, 0, -1, 2, -1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, -1, 2, -1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, -1, 2, -1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 0}, {0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 2}}; p[x_] = ExpandAll[(x + Sum[m11[[n, n]], {n, 1, Length[m11]}])*CharacteristicPolynomial[m11, x]]; f[x_] = ExpandAll[1/(x^12*p[1/x])]; a = Table[SeriesCoefficient[Series[f[t], {t, 0, 35}], n], {n, 0, 35}]
CROSSREFS
KEYWORD
uned,sign
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 14 2008
STATUS
approved