

A140079


Numbers n such that n and n+1 have 5 distinct prime factors.


11



254540, 310155, 378014, 421134, 432795, 483405, 486590, 486794, 488565, 489345, 507129, 522444, 545258, 549185, 558789, 558830, 567644, 577940, 584154, 591260, 598689, 627095, 634809, 637329, 663585, 666995, 667029, 678755, 687939, 690234
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For the smallest number r such that r and r+1 have n distinct prime factors, see A093548.
Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite.  Charles R Greathouse IV, Jun 02 2016
Subsequence of the variant A321505 defined with with "at least 5" instead of "exactly 5" distinct prime factors. See A321495 for the differences.  M. F. Hasler, Nov 12 2018


LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000
D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yildirim., Small gaps between almost primes, the parity problem and some conjectures of Erdos on consecutive integers, arXiv:0803.2636 [math.NT], 2008.


MATHEMATICA

a = {}; Do[If[Length[FactorInteger[n]] == 5 && Length[FactorInteger[n + 1]] == 5, AppendTo[a, n]], {n, 1, 100000}]; a (*Artur Jasinski*)
Transpose[SequencePosition[Table[If[PrimeNu[n]==5, 1, 0], {n, 700000}], {1, 1}]][[1]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Jul 25 2015 *)


PROG

(PARI) is(n)=omega(n)==5 && omega(n+1)==5 \\ Charles R Greathouse IV, Jun 02 2016


CROSSREFS

Cf. A074851, A140077, A140078.
Cf. A093548.
Equals A321505 \ A321495.
Sequence in context: A236443 A069176 A253725 * A321505 A034631 A168352
Adjacent sequences: A140076 A140077 A140078 * A140080 A140081 A140082


KEYWORD

nonn


AUTHOR

Artur Jasinski, May 07 2008


STATUS

approved



