login
A321495
Numbers k such that k and k+1 have at least 5 but not both exactly 5 distinct prime factors.
6
728364, 1565564, 1774409, 1817529, 1923635, 2162094, 2187185, 2199834, 2225894, 2369850, 2557190, 2594514, 2659734, 2671305, 2794154, 2944689, 2964884, 3126045, 3139730, 3170244, 3244955, 3273809, 3279639, 3382379, 3387054, 3506810, 3555110, 3585945, 3686969, 3711630
OFFSET
1,1
COMMENTS
Complement of A140079 (k and k+1 have exactly 5 distinct prime factors) in A321505 (k and k+1 have at least 5 distinct prime factors).
FORMULA
MATHEMATICA
aQ[n_]:=Module[{v={PrimeNu[n], PrimeNu[n+1]}}, Min[v]>4 && v!={5, 5}]; Select[Range[120000], aQ] (* Amiram Eldar, Nov 12 2018 *)
PROG
(PARI) is(n)=vecmin(n=[omega(n), omega(n+1)])>4&&n!=[5, 5]
CROSSREFS
Cf. A140079, A321505; A321494, A321496 (analog for 4 & 6 factors).
Sequence in context: A250153 A252324 A204150 * A234495 A156867 A156868
KEYWORD
nonn
AUTHOR
M. F. Hasler, Nov 12 2018
STATUS
approved