OFFSET
1,1
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
255255 = 3*5*7*11*13*17
285285 = 3*5*7*11*13*19
345345 = 3*5*7*11*13*23
435435 = 3*5*7*11*13*29
MATHEMATICA
f[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1}&&FactorInteger[n][[1, 1]]>2; lst={}; Do[If[f[n], AppendTo[lst, n]], {n, 6*9!}]; lst
PROG
(PARI) is(n) = {n%2 == 1 && factor(n)[, 2]~ == [1, 1, 1, 1, 1, 1]} \\ David A. Corneth, Aug 26 2020
(Python)
from sympy import primefactors, factorint
print([n for n in range(1, 1000000, 2) if len(primefactors(n)) == 6 and max(list(factorint(n).values())) == 1]) # Karl-Heinz Hofmann, Mar 01 2023
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A168352(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b+1, isqrt(x//c)+1), a+1)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b+1, integer_nthroot(x//c, m)[0]+1), a+1) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 1, 2, 1, 6)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 10 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Nov 23 2009
EXTENSIONS
Definition corrected by R. J. Mathar, Nov 24 2009
More terms from David A. Corneth, Aug 26 2020
STATUS
approved