login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140076 Pierce expansion of the cube root of 1/2. 1
1, 4, 5, 7, 8, 18, 384, 7958, 14304, 16623, 18610, 20685, 72923, 883177, 1516692, 2493788, 2504069, 22881179, 110219466, 2241255405, 34982468090, 64356019489, 110512265214, 1142808349967, 3550630472116, 5238523454726, 7129035664265 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

2^(-1/3) = 1-1/4(1-1/5(1-1/7(1-1/8(1-1/18(1-1/384(...))))))

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..500

G. P. Michon, Pierce Expansions.

Eric Weisstein's World of Mathematics, Pierce Expansion.

FORMULA

Starting with x(1)=2^(-1/3), a(n) = floor(1/x(n)) and x(n+1) = 1-a(n)x(n).

EXAMPLE

a(1) is 1 because the floor of 2^(1/3) is 1.

a(2)=4 because 1/(1-2^(-1/3)) is 4.8473221...

MATHEMATICA

$MaxExtraPrecision = 80; x[1] = 2^(-1/3); a[n_] := a[n] = Floor[1/x[n]]; x[n_] := x[n] = 1 - a[n-1]*x[n-1]; Table[a[n], {n, 1, 27}] (* Jean-Fran├žois Alcover, Dec 12 2011 *)

PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/3), 7!], 25] (* G. C. Greubel, Nov 14 2016 *)

CROSSREFS

Cf. A091831, A006283, A006284, A061233, A118242.

Sequence in context: A264746 A276324 A226628 * A135186 A011336 A094328

Adjacent sequences:  A140073 A140074 A140075 * A140077 A140078 A140079

KEYWORD

easy,nice,nonn

AUTHOR

Gerard P. Michon, Jun 01 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 10:34 EDT 2017. Contains 287240 sequences.