login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253725 Integer squares c^2 that are equal to the sums of a number M(n) of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, starting at b(n) (A002593) for M(n) being twice a squared integer (A001105). 4
254016, 76055841, 4286582784, 97578140625, 1253342942784, 10849309481241, 70360154505216, 366000785535609, 1599920001000000, 6075789839706609, 20542200096854016, 62996919308080641, 177789795179217984, 467082203214515625, 1152912708530601984 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Numbers a(n)=c^2 such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers where M(n) is twice a squared integer (A001105) and b(n)=(A002593).

If M is twice a squared integer, there always exists at least one nontrivial solution for the sum of M consecutive cubed integers starting at b^3 and equaling a squared integer c^2. For n>=1, M(n)= 2n^2 (A001105), b(n) = M(M-1)/2 = n^2(2n^2 - 1) (A002593), c(n)= sqrt(M/2) (M(M^2-1)/2)= n^3(4n^4 - 1) (A253724) and a(n)=c(n)^2 (this sequence).

The trivial solutions with M < 1 and b < 2 are not considered here.

LINKS

Vladimir Pletser, Table of n, a(n) for n = 2..50000

Vladimir Pletser, File Triplets (M,b,c) for M=2n^2

Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.

R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.

Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).

FORMULA

a(n) = (n^3(4n^4 - 1))^2.

G.f.: -9*x^2*(x^14 -15*x^13 +106*x^12 +27754*x^11 +8028759*x^10 +352487303*x^9 +4572193580*x^8 +22833696108*x^7 +49725383807*x^6 +49725372367*x^5 +22833705546*x^4 +4572187210*x^3 +352490761*x^2 +8027289*x +28224) / (x -1)^15. - Colin Barker, Jan 14 2015

EXAMPLE

For n=2, M(n)=8, b(n)=28, c(n)=504, a(n)=c^2=254016.

See "File Triplets (M,b,c) for M=2n^2" link.

MAPLE

restart: for n from 2 to 50000 do a:=(n^3*(4*n^4 - 1))^2: print (a); end do:

MATHEMATICA

f[n_] := (n^3 (4 n^4 - 1))^2; Rest[f /@ Range@16] (* Michael De Vlieger, Jan 28 2015 *)

PROG

(MAGMA) [(n^3*(4*n^4-1))^2: n in [2..20]]; // Vincenzo Librandi, Feb 19 2015

CROSSREFS

Cf. A116108, A116145, A126200, A126203, A163392, A163393, A253679, A253680, A253707, A253708, A002593, A253724.

Sequence in context: A140967 A236443 A069176 * A140079 A321505 A034631

Adjacent sequences:  A253722 A253723 A253724 * A253726 A253727 A253728

KEYWORD

nonn,easy

AUTHOR

Vladimir Pletser, Jan 10 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 07:13 EDT 2020. Contains 335398 sequences. (Running on oeis4.)