login
A253725
Integer squares c^2 that are equal to the sums of a number M(n) of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, starting at b(n) (A002593) for M(n) being twice a squared integer (A001105).
4
254016, 76055841, 4286582784, 97578140625, 1253342942784, 10849309481241, 70360154505216, 366000785535609, 1599920001000000, 6075789839706609, 20542200096854016, 62996919308080641, 177789795179217984, 467082203214515625, 1152912708530601984
OFFSET
2,1
COMMENTS
Numbers a(n)=c^2 such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers where M(n) is twice a squared integer (A001105) and b(n)=(A002593).
If M is twice a squared integer, there always exists at least one nontrivial solution for the sum of M consecutive cubed integers starting at b^3 and equaling a squared integer c^2. For n>=1, M(n)= 2n^2 (A001105), b(n) = M(M-1)/2 = n^2(2n^2 - 1) (A002593), c(n)= sqrt(M/2) (M(M^2-1)/2)= n^3(4n^4 - 1) (A253724) and a(n)=c(n)^2 (this sequence).
The trivial solutions with M < 1 and b < 2 are not considered here.
LINKS
R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
a(n) = (n^3(4n^4 - 1))^2.
G.f.: -9*x^2*(x^14 -15*x^13 +106*x^12 +27754*x^11 +8028759*x^10 +352487303*x^9 +4572193580*x^8 +22833696108*x^7 +49725383807*x^6 +49725372367*x^5 +22833705546*x^4 +4572187210*x^3 +352490761*x^2 +8027289*x +28224) / (x -1)^15. - Colin Barker, Jan 14 2015
EXAMPLE
For n=2, M(n)=8, b(n)=28, c(n)=504, a(n)=c^2=254016.
See "File Triplets (M,b,c) for M=2n^2" link.
MAPLE
restart: for n from 2 to 50000 do a:=(n^3*(4*n^4 - 1))^2: print (a); end do:
MATHEMATICA
f[n_] := (n^3 (4 n^4 - 1))^2; Rest[f /@ Range@16] (* Michael De Vlieger, Jan 28 2015 *)
LinearRecurrence[{15, -105, 455, -1365, 3003, -5005, 6435, -6435, 5005, -3003, 1365, -455, 105, -15, 1}, {254016, 76055841, 4286582784, 97578140625, 1253342942784, 10849309481241, 70360154505216, 366000785535609, 1599920001000000, 6075789839706609, 20542200096854016, 62996919308080641, 177789795179217984, 467082203214515625, 1152912708530601984}, 20] (* Harvey P. Dale, Feb 18 2023 *)
PROG
(Magma) [(n^3*(4*n^4-1))^2: n in [2..20]]; // Vincenzo Librandi, Feb 19 2015
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jan 10 2015
STATUS
approved