

A139829


Primes of the form 4x^2+4xy+11y^2.


1



11, 19, 59, 131, 139, 179, 211, 251, 331, 379, 419, 491, 499, 571, 619, 659, 691, 739, 811, 859, 971, 1019, 1051, 1091, 1171, 1259, 1291, 1451, 1459, 1499, 1531, 1571, 1579, 1619, 1699, 1811, 1931, 1979, 2011, 2099, 2131, 2179, 2251, 2339, 2371
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Discriminant=160. See A139827 for more information.
Also, primes of form u^2+10v^2 with odd v, while A107145 has even v. One can transform its form as (2x+y)^2+10y^2 (where y can only be odd) and the latter is x^2+10(2y)^2. This sequence has primes {11,19} mod 20 while the second has {1,9} mod 20 and together they are the primes x^2+10y^2 (A033201) which are {1,9,11,20} mod 20. [From Tito Piezas III, Jan 01 2009]


LINKS

Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


FORMULA

The primes are congruent to {11, 19} (mod 40).


MATHEMATICA

QuadPrimes2[4, 4, 11, 10000] (* see A106856 *)


PROG

(MAGMA) [ p: p in PrimesUpTo(3000)  p mod 40 in {11, 19}]; // Vincenzo Librandi, Jul 29 2012


CROSSREFS

Sequence in context: A189888 A227930 A224383 * A138355 A265802 A178385
Adjacent sequences: A139826 A139827 A139828 * A139830 A139831 A139832


KEYWORD

nonn,easy


AUTHOR

T. D. Noe, May 02 2008


STATUS

approved



