

A107145


Primes of the form x^2 + 40y^2.


26



41, 89, 241, 281, 401, 409, 449, 521, 569, 601, 641, 761, 769, 809, 881, 929, 1009, 1049, 1129, 1201, 1249, 1289, 1321, 1361, 1409, 1481, 1489, 1601, 1609, 1721, 1801, 1889, 2081, 2089, 2129, 2161, 2281, 2441, 2521, 2609, 2689, 2729, 2801
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Discriminant = 160. See A107132 for more information.


LINKS

Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


FORMULA

The primes are congruent to {1, 9} (mod 40).  T. D. Noe, Apr 29 2008


MATHEMATICA

QuadPrimes2[1, 0, 40, 10000] (* see A106856 *)


PROG

(MAGMA) [ p: p in PrimesUpTo(3000)  p mod 40 in {1, 9} ]; // Vincenzo Librandi, Jul 24 2012
(PARI) list(lim)=my(v=List(), t); forprime(p=41, lim, t=p%40; if(t==1t==9, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017


CROSSREFS

Cf. A139643.
Sequence in context: A142411 A139924 A155572 * A087857 A139995 A044179
Adjacent sequences: A107142 A107143 A107144 * A107146 A107147 A107148


KEYWORD

nonn,easy


AUTHOR

T. D. Noe, May 13 2005


STATUS

approved



