login
A189888
a(n) = A139602(m) such that for any k>m, A139602(k) > A139602(m).
0
11, 19, 43, 97, 163, 191, 223, 457, 877, 1049, 1307, 1987, 2029, 2129, 4217, 6599, 9967, 10357, 18233, 66343, 74573, 95911, 99719, 186551, 196337, 211219, 262469, 277301, 416573, 603487, 994549, 1403137, 4117441, 4805761, 4895789, 5823067, 5842813, 7704409
OFFSET
1,1
COMMENTS
Dickson's conjecture implies that this sequence is infinite. [Charles R Greathouse IV, Mar 22, 2011]
EXAMPLE
For n=1, a(n)=A139602(1)=11;
A139602(3)=61 is skipped since A139602(4)=43 < A139602(3), thus a(3)=A139602(4)=43;
For the same reason, A139602(8) and A139602(9) are skipped so that a(7)=A139602(10)=223.
MATHEMATICA
count=0; imin=0; cstop=65; pn=4; While[count<cstop, pn++; np=Prime[pn]; i=0; cp1=np; cp2=np; While[i++; diff=6*i; cp1=np-diff; cp2=np+diff; !(PrimeQ[cp1] && PrimeQ[cp2])]; Print[np]; If[i>imin, imin=i; count++]]
CROSSREFS
Cf. A139602.
Sequence in context: A294993 A201719 A107201 * A227930 A224383 A139829
KEYWORD
nonn
AUTHOR
Lei Zhou, Apr 30 2011
STATUS
approved