login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135837
A007318 * a triangle with (1, 2, 2, 4, 4, 8, 8, ...) in the main diagonal and the rest zeros.
5
1, 1, 2, 1, 4, 2, 1, 6, 6, 4, 1, 8, 12, 16, 4, 1, 10, 20, 40, 20, 8, 1, 12, 30, 80, 60, 48, 8, 1, 14, 42, 140, 140, 168, 56, 16, 1, 16, 56, 224, 280, 448, 224, 128, 16, 1, 18, 72, 336, 504, 1008, 672, 576, 144, 32
OFFSET
1,3
COMMENTS
This sequence is jointly generated with A117919 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 26 2012
Subtriangle of the triangle (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012
LINKS
FORMULA
Binomial transform of a triangle with (1, 2, 2, 4, 4, 8, 8, ...) in the main diagonal and the rest zeros.
Sum_{k=1..n} T(n, k) = A001333(n).
From Philippe Deléham, Mar 19 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-x+2*y*x^2-2*y^2*x^2)/(1-2*x+2*y*x^2-2*y^2*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2, T(n,k) = 0 if k < 0 or if k > n. (End)
G.f.: x*y*(1-x+2*x*y)/(1-2*x-2*x^2*y^2+x^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Feb 07 2022: (Start)
T(n, n) = A016116(n).
T(n, 2) = 2*(n-1).
T(n, 3) = 2*A000217(n-2). (End)
EXAMPLE
First few rows of the triangle:
1;
1, 2;
1, 4, 2;
1, 6, 6, 4;
1, 8, 12, 16, 4;
1, 10, 20, 40, 20, 8;
1, 12, 30, 80, 60, 48, 8;
...
From Philippe Deléham, Mar 19 2012: (Start)
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1, -1, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 4, 2, 0;
1, 6, 6, 4, 0;
1, 8, 12, 16, 4, 0;
1, 10, 20, 40, 20, 8, 0;
1, 12, 30, 80, 60, 48, 8, 0; (End)
MATHEMATICA
(* First program *)
u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
v[n_, x_]:= 2 x*u[n-1, x] + v[n-1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A117919 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A135837 *) (* Clark Kimberling, Feb 26 2012 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[k==n, 2^Floor[n/2], 2*T[n-1, k] - T[n-2, k] + 2*T[n-2, k-2]]]];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Feb 07 2022 *)
PROG
(Haskell)
a135837 n k = a135837_tabl !! (n-1) !! (k-1)
a135837_row n = a135837_tabl !! (n-1)
a135837_tabl = [1] : [1, 2] : f [1] [1, 2] where
f xs ys = ys' : f ys ys' where
ys' = zipWith3 (\u v w -> 2 * u - v + 2 * w)
(ys ++ [0]) (xs ++ [0, 0]) ([0, 0] ++ xs)
-- Reinhard Zumkeller, Aug 08 2012
(Sage)
def T(n, k): # A135837
if (k<1 or k>n): return 0
elif (k==1): return 1
elif (k==n): return 2^(n//2)
else: return 2*T(n-1, k) - T(n-2, k) + 2*T(n-2, k-2)
flatten([[T(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 07 2022
CROSSREFS
Sequence in context: A145118 A124927 A126279 * A027144 A158303 A304223
KEYWORD
nice,nonn,tabl
AUTHOR
Gary W. Adamson, Dec 01 2007
STATUS
approved