This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124927 Triangle read by rows: T(n,0)=1, T(n,k)=2*binomial(n,k) if k>0 (0<=k<=n). 8
 1, 1, 2, 1, 4, 2, 1, 6, 6, 2, 1, 8, 12, 8, 2, 1, 10, 20, 20, 10, 2, 1, 12, 30, 40, 30, 12, 2, 1, 14, 42, 70, 70, 42, 14, 2, 1, 16, 56, 112, 140, 112, 56, 16, 2, 1, 18, 72, 168, 252, 252, 168, 72, 18, 2, 1, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2, 1, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Pascal triangle with all entries doubled except for the first entry in each row. A028326 with first column replaced by 1's. Row sums are 2^(n+1)-1. From Paul Barry, Sep 19 2008: (Start) Reversal of A129994. Diagonal sums are A001595. T(2n,n) is A100320. Binomial transform of matrix with 1,2,2,2,... on main diagonal, zero elsewhere. (End) This sequence is jointly generated with A210042 as an array of coefficients of polynomials v(n,x):  initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+v(n-1,x) +1 and v(n,x)=x*u(n-1,x)+x*v(n-1,x).  See the Mathematica section. - Clark Kimberling, Mar 09 2012 Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 25 2012 LINKS Reinhard Zumkeller, Rows n=0..150 of triangle, flattened FORMULA T(n,0) = 1; for n>0: T(n,n) = 2, T(n,k) = T(n-1,k) + T(n-1,n-k), 1n. - Philippe Deléham, Mar 25 2012 G.f.: (1-x+x*y)/((-1+x)*(x*y+x-1)). - R. J. Mathar, Aug 11 2015 EXAMPLE Triangle starts:   1;   1,  2;   1,  4,  2;   1,  6,  6,  2;   1,  8, 12,  8,  2;   1, 10, 20, 20, 10, 2; (1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1, 0, 0, ...) begins:   1;   1,  0;   1,  2,  0;   1,  4,  2,  0;   1,  6,  6,  2,  0;   1,  8, 12,  8,  2, 0;   1, 10, 20, 20, 10, 2, 0. - Philippe Deléham, Mar 25 2012 MAPLE T:=proc(n, k) if k=0 then 1 else 2*binomial(n, k) fi end: for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form MATHEMATICA (* First program *) u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A210042 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A124927 *) (* Clark Kimberling, Mar 17 2012 *) (* Second program *) Table[If[k==0, 1, 2*Binomial[n, k]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 10 2019 *) PROG (Haskell) a124927 n k = a124927_tabl !! n !! k a124927_row n = a124927_tabl !! n a124927_tabl = iterate    (\row -> zipWith (+) ([0] ++ reverse row) (row ++ [1])) [1] -- Reinhard Zumkeller, Mar 04 2012 (PARI) T(n, k) = if(k==0, 1, 2*binomial(n, k)); \\ G. C. Greubel, Jul 10 2019 (MAGMA) [k eq 0 select 1 else 2*Binomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 10 2019 (Sage) def T(n, k):     if (k==0): return 1     else: return 2*binomial(n, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 10 2019 CROSSREFS Cf. A000225. Cf. A074909. Sequence in context: A133113 A124840 A145118 * A126279 A135837 A027144 Adjacent sequences:  A124924 A124925 A124926 * A124928 A124929 A124930 KEYWORD nonn,easy,tabl AUTHOR Gary W. Adamson, Nov 12 2006 EXTENSIONS Edited by N. J. A. Sloane, Nov 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:29 EDT 2019. Contains 328267 sequences. (Running on oeis4.)