This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135692 Scaled by 2 version of Per Nørgård recursion. 0
 0, 1, -2, -4, 4, 6, 8, 6, -8, -2, -12, -8, -16, -32, -12, -16, 16, 12, 4, 8, 24, 52, 16, 4, 32, 52, 64, 56, 24, 40, 32, 64, -32, -72, -24, -16, -8, -72, -16, -8, -48, -32, -104, -112, -32, -64, -8, -64, -64, 8, -104, -80, -128, -184, -112, -152, -48, -72, -80, -64, -64, 0, -128, -160, 64, 80, 144, 80, 48, 240, 32, 112, 16, -80 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Here the scale is a=2: These chaotic types can also be scaled by integers as: p(i) = If[Mod[i, 2] == 0, p(i - 2) - a*(p(Floor[i/2]) - p(Abs[Floor[i/2] - 1])), p[i - 1] - a*(p(Abs[Floor[i/2] - 2)] - p(Abs[Floor[i/2] - 3]))] where a is an integer a=1,2,3,.. The composer Per Nørgård's name is also written in the OEIS as Per Noergaard. REFERENCES web page:http ://www.pernoergaard.dk/eng/strukturer/uendelig/ukonstruktion05.html: Per Norgard recursion Programming LINKS FORMULA p(i) = If[Mod[i, 2] == 0, p(i - 2) - 2*(p(Floor[i/2]) - p(Abs[Floor[i/2] - 1])), p[i - 1] - 2*(p(Abs[Floor[i/2] - 2)] - p(Abs[Floor[i/2] - 3]))] MATHEMATICA p[0] = 0; p[1] = 1; p[2] = -1; p[3] = -2; p[i_] := p[i] = If[Mod[i, 2] == 0, p[i - 2] - (p[Floor[i/2]] - p[Abs[Floor[i/2] - 1]]), p[i - 1] - (p[Abs[Floor[i/2] - 2]] - p[Abs[Floor[i/2] - 3]])]; b = Table[p[n], {n, 0, 100}] CROSSREFS Sequence in context: A038669 A288573 A288574 * A089003 A132118 A221952 Adjacent sequences:  A135689 A135690 A135691 * A135693 A135694 A135695 KEYWORD uned,sign AUTHOR Roger L. Bagula, Feb 21 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 02:02 EDT 2019. Contains 325189 sequences. (Running on oeis4.)