This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135689 a(i) = if [mod[i, 2] == 0 then a(i - 2) - (a(Floor[i/2]) - a(Abs[Floor[i/2] - 1])), otherwise a[i - 1] - (a(Abs[Floor[i/2] - 2)] - a(Abs[Floor[i/2] - 3]))]. 0
 0, 1, -1, -2, 1, 2, 2, 1, -1, 1, -2, -1, -2, -5, -1, -2, 1, 1, -1, 0, 2, 4, 1, -1, 2, 5, 5, 4, 1, 2, 2, 5, -1, -5, -1, 0, 1, -2, 0, 0, -2, 0, -4, -5, -1, -3, 1, -1, -2, 1, -5, -3, -5, -8, -4, -7, -1, -1, -2, -1, -2, 1, -5, -6, 1, 1, 5, 2, 1, 7, 0, 4, -1, -5, 2, 1, 0, -1, 0, 3, 2, 0, 0, 0, 4, 6, 5, 3, 1, 5, 3, 4, -1, -5, 1, 3, 2, -2, -1, 1, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Recursion based on J. Mortensen's programming page for Per Nørgård's "infinite series" music composition sequence technique. The composer Per Nørgård's name is also written in the OEIS as Per Noergaard. LINKS J. Mortensen, Per Nørgård recursion programming MATHEMATICA p[0] = 0; p[1] = 1; p[2] = -1; p[3] = -2; p[i_] := p[i] = If[Mod[i, 2] == 0, p[i - 2] - (p[Floor[i/2]] - p[Abs[Floor[i/2] - 1]]), p[i - 1] - (p[Abs[Floor[i/2] - 2]] - p[Abs[Floor[i/2] - 3]])]; b = Table[p[n], {n, 0, 100}] CROSSREFS Sequence in context: A279362 A214841 A025917 * A029438 A304274 A081592 Adjacent sequences:  A135686 A135687 A135688 * A135690 A135691 A135692 KEYWORD sign AUTHOR Roger L. Bagula, Feb 19 2008 EXTENSIONS Edited by N. J. A. Sloane, Mar 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 06:55 EDT 2019. Contains 325192 sequences. (Running on oeis4.)