login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135690
a(n) = a(n-2) - (a(n-1) - a(n-2)) if (n mod 2) = 0, otherwise a(n) = a(n-1) - (a(n-3) - a(n-4)), with a(0) = 0, a(1) = 1, a(2) = -1, a(3) = 2.
4
0, 1, -1, 2, -4, -2, -6, 0, -12, -8, -16, -4, -28, -20, -36, -12, -60, -44, -76, -28, -124, -92, -156, -60, -252, -188, -316, -124, -508, -380, -636, -252, -1020, -764, -1276, -508, -2044, -1532, -2556, -1020, -4092, -3068, -5116, -2044, -8188, -6140, -10236, -4092, -16380, -12284, -20476
OFFSET
0,4
FORMULA
G.f.: x*(1-2*x)*(1+3*x^2)/((1-x)*(1-2*x^4)). - Colin Barker, Jan 26 2013
a(n) = 4 - C*2^floor(n/4), where C = 4,3,5,2 according as n mod 4 = 0,1,2,3 respectively. - Kevin Ryde, Nov 26 2021
MATHEMATICA
a[0] = 0; a[1] = 1; a[2] = -1; a[3] = 2; a[n_]:= a[n]= If[Mod[n, 2]==0, a[n-2] - (a[n-1] -a[n-2]), a[n-1] -(a[n-3] -a[n-4])]; Table[a[n], {n, 0, 60}]
PROG
(Sage)
@CachedFunction
def A135690(n):
if (n<2): return n
elif (n<4): return (-1)^(n+1)*(n-1)
elif (n%2==0): return A135690(n-2) - (A135690(n-1) - A135690(n-2))
else: return A135690(n-1) - (A135690(n-3) - A135690(n-4))
[A135690(n) for n in (0..60)] # G. C. Greubel, Nov 24 2021
(PARI) a(n) = 4 - [4, 3, 5, 2][n%4+1] << (n>>2); \\ Kevin Ryde, Nov 26 2021
CROSSREFS
Sequence in context: A198723 A198914 A207868 * A010241 A366839 A278526
KEYWORD
easy,sign,less
AUTHOR
Roger L. Bagula, Feb 19 2008
EXTENSIONS
Edited by G. C. Greubel and Kevin Ryde, Nov 24 2021
STATUS
approved