login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135694 Period 6: repeat [1, -1, -1, -1, 0, 2]. 1
1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2, 1, -1, -1, -1, 0, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..83.

Index entries for linear recurrences with constant coefficients, signature (0,-1,0,-1).

FORMULA

a(n) = (1/6)*((n mod 6)-2*((n+1) mod 6)-((n+2) mod 6)+2*((n+5) mod 6)). - Paolo P. Lava, Mar 03 2008

From R. J. Mathar, Mar 31 2008: (Start)

a(n) = a(n-6) for n>5. a(n) = -a(n-2) - a(n-4) for n>3.

a(n) = (A119910(n+3) - A049347(n+1))/2 for n>0.

G.f.: (1-x-2*x^3)/((x^2-x+1)*(x^2+x+1)). (End)

a(n) = (3*cos(n*Pi/3) - 8*sqrt(3)*cos(n*Pi/6)^3*sin(n*Pi/6))/3. - Wesley Ivan Hurt, Jun 22 2016

MAPLE

A135694 := proc(n) op((n mod 6)+1, [1, -1, -1, -1, 0, 2]) ; end: seq(A135694(n), n=0..150) ; # R. J. Mathar, Feb 07 2009

MATHEMATICA

PadRight[{}, 100, {1, -1, -1, -1, 0, 2}] (* Wesley Ivan Hurt, Jun 22 2016 *)

PROG

(MAGMA) &cat [[1, -1, -1, -1, 0, 2]^^20]; // Wesley Ivan Hurt, Jun 22 2016

CROSSREFS

Cf. A000079, A049347, A119910, A135575.

Sequence in context: A136049 A225192 A262432 * A025924 A025904 A137993

Adjacent sequences:  A135691 A135692 A135693 * A135695 A135696 A135697

KEYWORD

sign,easy

AUTHOR

Paul Curtz, Feb 24 2008

EXTENSIONS

More periods from R. J. Mathar, Feb 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 14:44 EDT 2019. Contains 325106 sequences. (Running on oeis4.)