login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134242
Numerators of certain constants c_n = A180609(n)/n! related to Hurwitz numbers.
2
1, -1, 1, -2, 11, -3, -11, 29, 493, -2711, -12406, 2636317, -10597579, -439018457, 1165403153, 118734633647, -105428488301, -4070802683898, 1695077946695371, 56532812889378221, -252968859037883917, -425882179787933647571, 123624959518930226565553, 32729394708071881944913, -5814212300444136523052695
OFFSET
1,4
COMMENTS
Manetti-Ricciardi refer to the c_n as Koszul numbers.
LINKS
M Manetti, G Ricciardi, Universal Lie formulas for higher antibrackets, arXiv preprint arXiv:1509.09032 [math.QA], 2015-2016.
S. Shadrin and D. Zvonkine, Changes of variables in ELSV-type formulas, Michigan Mathematical Journal, vol. 55 (2007), 209-228.
D. Zvonkine, Home Page
FORMULA
Manetti-Ricciardi Theorem 4.4 give a recurrence for the c_n in terms of Stirling numbers.
EXAMPLE
The fractions are 1, -1/2, 1/2, -2/3, 11/12, -3/4, -11/6, 29/4, 493/12, -2711/6, -12406/15, 2636317/60, -10597579/120, -439018457/60, 1165403153/20, 118734633647/60, ...
MATHEMATICA
K[1] = 1;
K[n_] := K[n] = -2/((n+2)(n-1)) Sum[StirlingS2[n+1, i] K[i], {i, 1, n-1}];
Table[Numerator[K[n]], {n, 1, 25}] (* Jean-François Alcover, Jul 26 2018 *)
CROSSREFS
Sequence in context: A338845 A121713 A357820 * A087712 A180702 A263328
KEYWORD
sign,frac,easy
AUTHOR
N. J. A. Sloane, Jan 30 2008
EXTENSIONS
More terms from Manetti-Ricciardi added by N. J. A. Sloane, May 25 2016
STATUS
approved