login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180609 G.f. L(x) satisfies: L(x) = L(exp(x)-1)*(1-exp(-x))/x = Sum_{n>=1} a(n)*x^n/(n!*(n+1)!). 3
1, -1, 3, -16, 110, -540, -9240, 292320, 14908320, -1639612800, -33013854720, 21046667685120, -549927873855360, -637881314775344640, 76198391578224115200, 41404329870413936025600, -12499862617277304901632000, -5212560012919105291193548800, 3436632117109253032257698611200, 1146156616720354265092896141312000, -1615552168543480516126725021634560000, -379914190499326491647463301427478528000, 1268235921756889621556352102589895172096000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..150

M Manetti, G Ricciardi, Universal Lie formulas for higher antibrackets, arXiv preprint arXiv:1509.09032 [math.QA], 2015-2016.

FORMULA

G.f. satisfies: L(x) = (1+x)*log(1+x) * L( log(1+x) ) /x.

Let E_n(x) = E_{n-1}(exp(x)-1) denote the n-th iteration of exp(x)-1, then

. L(E_n(x)) = L(x) * x * E_n'(x) / E_n(x) for all n.

G.f. L(x) forms column 0 in the matrix log of the Riordan array ((exp(x)-1)/x, exp(x)-1).

Manetti-Ricciardi Theorem 4.4 give a recurrence for K_n := a(n)/n! in terms of Stirling numbers. - N. J. A. Sloane, May 25 2016

EXAMPLE

G.f.: L(x) = x/(1!*2!) - x^2/(2!*3!) + 3*x^3/(3!*4!) - 16*x^4/(4!*5!) + 110*x^5/(5!*6!) - 540*x^6/(6!*7!) - 9240*x^7/(7!*8!) + 292320*x^8/(8!*9!) -+...

The Riordan array ((exp(x)-1)/x, exp(x)-1) begins:

1;

1/(1!2!), 1;

2/(2!3!), 2/(1!2!), 1;

6/(3!4!), 7/(2!3!), 3/(1!2!), 1;

24/(4!5!), 36/(3!4!), 15/(2!3!), 4/(1!2!), 1;

120/(5!6!), 248/(4!5!), 108/(3!4!), 26/(2!3!), 5/(1!2!), 1;

720/(6!7!), 2160/(5!6!), 1032/(4!5!), 240/(3!4!), 40/(2!3!), 6/(1!2!), 1; ...

where the g.f. of column k = ((exp(x)-1)/x)^(k+1) for k>=0.

...

The matrix log of the above array begins:

0;

1/(1!2!), 0;

-1/(2!3!), 2/(1!2!), 0;

3/(3!4!), -2/(2!3!), 3/(1!2!), 0;

-16/(4!5!), 6/(3!4!), -3/(2!3!), 4/(1!2!), 0;

110/(5!6!), -32/(4!5!), 9/(3!4!), -4/(2!3!), 5/(1!2!), 0;

-540/(6!7!), 220/(5!6!), -48/(4!5!), 12/(3!4!), -5/(2!3!), 6/(1!2!), 0;

-9240/(7!8!), -1080/(6!7!), 330/(5!6!), -64/(4!5!), 15/(3!4!), -6/(2!3!), 7/(1!2!), 0; ...

in which the g.f. of column k equals (k+1)*L(x) for k>=0 and L(x) is the g.f. of this sequence.

MATHEMATICA

K[1] = 1;

K[n_] := K[n] = -2/((n+2)(n-1)) Sum[StirlingS2[n+1, i] K[i], {i, 1, n-1}];

a[n_] := n! K[n];

Array[a, 23] (* Jean-François Alcover, Jul 26 2018, from the Manetti-Ricciardi recurrence *)

PROG

(PARI) {a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(((exp(x+x^2*O(x^n))-1)/x)^c, r-c))), L=sum(n=1, #M, -(M^0-M)^n/n)); n!*(n+1)!*L[n+1, 1]}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A180610.

The fractions a(n)/n! are A134242(n)/A134243(n).

Sequence in context: A220379 A191800 A286764 * A074540 A353192 A218680

Adjacent sequences: A180606 A180607 A180608 * A180610 A180611 A180612

KEYWORD

sign,easy

AUTHOR

Paul D. Hanna, Sep 12 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 03:44 EST 2022. Contains 358649 sequences. (Running on oeis4.)