login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087712 a(1) = 1; if n = k-th prime, a(n) = k; otherwise write all prime factors of n in nondecreasing order, replace each prime with its rank, and concatenate the ranks. 12
1, 1, 2, 11, 3, 12, 4, 111, 22, 13, 5, 112, 6, 14, 23, 1111, 7, 122, 8, 113, 24, 15, 9, 1112, 33, 16, 222, 114, 10, 123, 11, 11111, 25, 17, 34, 1122, 12, 18, 26, 1113, 13, 124, 14, 115, 223, 19, 15, 11112, 44, 133, 27, 116, 16, 1222, 35, 1114, 28, 110, 17, 1123, 18 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Concatenations of consecutive entries of A112798. - R. J. Mathar, Feb 09 2009

The old entry with this A-number was a duplicate of A082467.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

EXAMPLE

n = 2 = first prime, a(2) = 1.

n = 3 = second prime, a(3) = 2.

n = 4 = 2*2 -> 1,1 -> 11, so a(4) = 11.

n = 6 = 2*3 -> 1,2 -> 12, so a(6) = 12.

n = 12 = 2*2*3 -> 1,1,2 -> 112, so a(12) = 112.

MAPLE

# Maple program from R. J. Mathar, Feb 08 2009: (Start)

cat2 := proc(a, b) a*10^(max(1, ilog10(b)+1))+b ; end:

A049084 := proc(p) if isprime(p) then numtheory[pi](p) ; else 0 ; fi; end:

A087712 := proc(n) local pf, a, p, ex ; if isprime(n) then A049084(n) ; elif n = 1 then 1 ; else pf := ifactors(n)[2] ; a := 0 ; for p in pf do for ex from 1 to op(2, p) do a := cat2(a, A049084(op(1, p)) ) ; od: od: fi; end:

seq(A087712(n), n=1..140); # (End)

# (Maple program from David Applegate and N. J. A. Sloane, Feb 09 2009)

with(numtheory):

f := proc(n) local t1, v, r, x, j;

if (n = 1) then return 1; end if;

t1 := ifactors(n): v := 0;

for x in op(2, t1) do r := pi(x[1]):

for j from 1 to x[2] do

v := v * 10^length(r) + r;

end do; end do; v; end proc;

MATHEMATICA

f[n_] := If[n == 1, 1, FromDigits@ Flatten[ IntegerDigits@# & /@ (PrimePi@# & /@ Flatten[ Table[ First@#, {Last@#}] & /@ FactorInteger@ n])]]; Array[f, 61] (* Robert G. Wilson v, Jun 06 2011 *)

PROG

(Haskell)

a087712 1 = 1

a087712 n = read $ concatMap (show . a049084) $ a027746_row n :: Integer

-- Reinhard Zumkeller, Oct 03 2012

CROSSREFS

See A098282 for lengths of trajectories. Cf. A077960, A156055.

Cf. A027746, A049084.

Sequence in context: A121713 A357820 A134242 * A180702 A263328 A081926

Adjacent sequences: A087709 A087710 A087711 * A087713 A087714 A087715

KEYWORD

nonn,base,look

AUTHOR

Eric Angelini, Feb 02 2009

EXTENSIONS

More terms from R. J. Mathar (Feb 08 2009) and independently from David Applegate and N. J. A. Sloane, Feb 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)