login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134241 a(n) = 8*(n-1)*(n-2)*(n-3)*(6*n^2-37*n+60). 1
0, 0, 0, 384, 4800, 25920, 91200, 248640, 572544, 1169280, 2183040, 3801600, 6262080, 9856704, 14938560, 21927360, 31315200, 43672320, 59652864, 80000640, 105554880, 137256000, 176151360, 223401024, 280283520, 348201600, 428688000, 523411200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

D. Zvonkine, Home Page

D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, vol. 7 (2007), no. 1, 135-162.

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

O.g.f.: 192*x^4*(3*x+2)*(5*x+1)/(-1+x)^6 . - R. J. Mathar, Feb 01 2008

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - G. C. Greubel, May 30 2016

MATHEMATICA

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 384, 4800, 25920}, 50] (* or *) Table[8 (n - 1) (n - 2) (n - 3) (6 n^2 - 37 n + 60), {n, 1, 25}] (* G. C. Greubel, May 30 2016 *)

CROSSREFS

Sequence in context: A252904 A252899 A183686 * A203980 A061403 A128967

Adjacent sequences:  A134238 A134239 A134240 * A134242 A134243 A134244

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jan 30 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 12:25 EST 2016. Contains 278971 sequences.