login
A134239
A127899(unsigned) * A007318.
2
1, 4, 2, 6, 9, 3, 8, 20, 16, 4, 10, 35, 45, 25, 5, 12, 54, 96, 84, 36, 6, 14, 77, 175, 210, 140, 49, 7, 16, 104, 288, 440, 400, 216, 64, 8, 18, 135, 441, 819, 945, 693, 315, 81, 9, 20, 170, 640, 1400, 1960, 1820, 1120, 440, 100, 10
OFFSET
0,2
LINKS
FORMULA
A127899(unsigned) * A007318.
Triangle, T(n,k) = (n+1) * A029635(n,n-k) for n > 0.
EXAMPLE
First few rows of the triangle are:
1;
4, 2;
6, 9, 3;
8, 20, 16, 4;
10, 35, 45, 25, 5;
12, 54, 96, 84, 36, 6;
14, 77, 175, 210, 140, 49, 7;
...
Row 3 = (8, 20, 16, 4) = 4 * (2, 5, 4, 1), where (2, 5, 4, 1) = row 3 of A029653, (2,1) Pascal's triangle.
PROG
(Haskell)
a134239 n k = a134239_tabl !! n !! k
a134239_row n = a134239_tabl !! n
a134239_tabl = [1] : zipWith (map . (*))
[2..] (map reverse $ tail a029635_tabl)
-- Reinhard Zumkeller, Nov 14 2014
CROSSREFS
Cf. A127899, A029653, A128543 (row sums).
Sequence in context: A330530 A302659 A363705 * A136390 A019610 A344792
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Oct 14 2007
EXTENSIONS
Corrected by Philippe Deléham, Oct 17 2007
Formula corrected by Reinhard Zumkeller, Nov 14 2014
STATUS
approved