login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127899 Transform related to the harmonic series. 12
1, -2, 2, 0, -3, 3, 0, 0, -4, 4, 0, 0, 0, -5, 5, 0, 0, 0, 0, -6, 6, 0, 0, 0, 0, 0, -7, 7, 0, 0, 0, 0, 0, 0, -8, 8, 0, 0, 0, 0, 0, 0, 0, -9, 9, 0, 0, 0, 0, 0, 0, 0, 0, -10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, 12 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This transform is the inverse of a triangle in which each row has n terms of the harmonic series; i.e., the inverse of: 1; 1, 1/2; 1, 1/2, 1/3; ...

Eigensequence of the unsigned triangle = A002467 starting (1, 4, 15, 76, 455, ...). - Gary W. Adamson, Dec 29 2008

Table T(n,k) read by antidiagonals. T(1,1)=1, T(n,1) = n (for n>1), T(n,2) = -n, T(n,k) = 0, k > 2. - Boris Putievskiy, Jan 17 2013

LINKS

Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened

Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.

FORMULA

Triangle, a(1) = 1; by rows, (n-2) zeros followed by -n, n.

From Boris Putievskiy, Jan 17 2013: (Start)

a(n) = floor((A002260(n)+2)/(A003056(n)+2))*(A003056(n)+1)*(-1)^(A002260(n)+A003056(n)+1),  n>0.

a(n) = floor((i+2)/(t+2))*(t+1)*(-1)^(i+t+1), where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)

a(n) = floor(-1/2*A002024(n)^2 + A002024(n+1)^2-1/2*A002024(n+1) + 1/2*A002024(n+2) - 1/2*A002024(n+2)^2). - Brian Tenneson, Feb 10 2017

EXAMPLE

First few rows of the triangle are:

1;

-2, 2;

0, -3, 3;

0, 0, -4, 4;

0, 0, 0, -5, 5;

0, 0, 0, 0, -6, 6;

0, 0, 0, 0, 0, -7, 7;

...

From Boris Putievskiy, Jan 17 2013: (Start)

The start of the sequence as table:

1..-1..0..0..0..0..0...

1..-2..0..0..0..0..0...

2..-3..0..0..0..0..0...

3..-4..0..0..0..0..0...

4..-5..0..0..0..0..0...

5..-6..0..0..0..0..0...

6..-7..0..0..0..0..0...

...

The start of the sequence as triangle array read by rows:

1;

-1,1;

0,-2,2;

0,0,-3,3;

0,0,0,-4,4;

0,0,0,0,-5,5;

0,0,0,0,0,-6,6;

0,0,0,0,0,0,-7,7;

...

Row number r (r>4) contains (r-2) times '0', then '-r' and 'r'. (End)

MATHEMATICA

Table[Module[{t = Floor[(-1 + Sqrt[8 n - 7])/2], i}, i = n - t (t + 1)/2; Floor[(i + 2)/(t + 2)] (t + 1) (-1)^(i + t + 1)], {n, 78}] (* or *)

Table[If[n == 1, {n}, ConstantArray[0, n - 2]~Join~{-n, n}], {n, 12}] // Flatten (* Michael De Vlieger, Feb 11 2017 *)

PROG

(Haskell)

a127899 n k = a127899_tabl !! (n-1) !! (k-1)

a127899_row n = a127899_tabl !! (n-1)

a127899_tabl = map reverse ([1] : xss) where

   xss = iterate (\(u : v : ws) -> u + 1 : v - 1 : ws ++ [0]) [2, -2]

-- Reinhard Zumkeller, Nov 14 2014

CROSSREFS

Cf. A002467.

Sequence in context: A129236 A127465 A271707 * A128615 A087508 A095731

Adjacent sequences:  A127896 A127897 A127898 * A127900 A127901 A127902

KEYWORD

tabl,sign

AUTHOR

Gary W. Adamson, Feb 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 01:08 EDT 2019. Contains 321479 sequences. (Running on oeis4.)