This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133500 The powertrain or power train map: Powertrain(n): if abcd... is the decimal expansion of a number n, then the powertrain of n is the number n' = a^b*c^d* ..., which ends in an exponent or a base according as the number of digits is even or odd. a(0) = 0 by convention. 35
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 1, 6, 36, 216, 1296 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS We take 0^0 = 1. The fixed points are in A135385. For 1-digit or 2-digit numbers this is the same as A075877. - R. J. Mathar, Mar 28 2012 a(A221221(n)) = A133048(A221221(n)) = A222493(n). - Reinhard Zumkeller, May 27 2013 LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..10000 N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence. N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence) EXAMPLE 20 -> 2^0 = 1, 21 -> 2^1 = 2, 24 -> 2^4 = 16, 39 -> 3^9 = 19683, 623 -> 6^2*3 = 108, etc. MAPLE powertrain:=proc(n) local a, i, n1, n2, t1, t2; n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=1; for i from 0 to floor(t2/2)-1 do a := a*t1[t2-2*i]^t1[t2-2*i-1]; od: if t2 mod 2 = 1 then a:=a*t1; fi; RETURN(n2*a); end; # N. J. A. Sloane, Dec 03 2007 MATHEMATICA ptm[n_]:=Module[{idn=IntegerDigits[n]}, If[EvenQ[Length[idn]], Times@@( #[]^ #[] &/@Partition[idn, 2]), (Times@@(#[]^#[] &/@ Partition[ Most[idn], 2]))Last[idn]]]; Array[ptm, 70, 0] (* Harvey P. Dale, Jul 15 2019 *) PROG (Haskell) a133500 = train . reverse . a031298_row where    train []       = 1    train [x]      = x    train (u:v:ws) = u ^ v * (train ws) -- Reinhard Zumkeller, May 27 2013 (Python) def A133500(n):     s = str(n)     l = len(s)     m = int(s[-1]) if l % 2 else 1     for i in range(0, l-1, 2):         m *= int(s[i])**int(s[i+1])     return m # Chai Wah Wu, Jun 16 2017 CROSSREFS Cf. A075877, A133501-A133502, A135385. For records see A133504, A133505. Cf. A133048 (powerback), A031346 and A003001 (persistence). Cf. A031298, A007376. Sequence in context: A175400 A175399 A075877 * A256229 A052423 A126616 Adjacent sequences:  A133497 A133498 A133499 * A133501 A133502 A133503 KEYWORD nonn,base,look AUTHOR J. H. Conway, Dec 03 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 13:57 EDT 2019. Contains 328113 sequences. (Running on oeis4.)