login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A031298 Triangle T(n,k): write n in base 10, reverse order of digits. 42
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The length of n-th row is given in A055642(n). - Reinhard Zumkeller, Jul 04 2012

According to the formula for T(n,1), columns are numbered starting with 1. One might also number columns starting with the offset 0, as to have the coefficient of 10^k in column k. - M. F. Hasler, Jul 21 2013

LINKS

Reinhard Zumkeller, Rows n = 0..2500 of triangle, flattened

FORMULA

T(n,1) = A010879(n); T(n,A055642(n)) = A000030(n). - Reinhard Zumkeller, Jul 04 2012

PROG

(Haskell)

a031298 n k = a031298_tabf !! n !! k

a031298_row n = a031298_tabf !! n

a031298_tabf = iterate succ [0] where

   succ []     = [1]

   succ (9:ds) = 0 : succ ds

   succ (d:ds) = (d + 1) : ds

-- Reinhard Zumkeller, Jul 04 2012

(PARI) T(n, k)=n\10^(k-1)%10 \\ - M. F. Hasler, Jul 21 2013

CROSSREFS

Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031045, A031087 for the base-2 to base-9 analogs.

Sequence in context: A252648 A054054 A115353 * A004428 A004429 A004426

Adjacent sequences:  A031295 A031296 A031297 * A031299 A031300 A031301

KEYWORD

nonn,base,tabf,less,look

AUTHOR

Clark Kimberling

EXTENSIONS

Initial 0 and better name by Philippe Deléham, Oct 20 2011.

Edited by M. F. Hasler, Jul 21 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 15:28 EDT 2018. Contains 316236 sequences. (Running on oeis4.)