login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133499 a(n) = n^7 - n. 4
0, 0, 126, 2184, 16380, 78120, 279930, 823536, 2097144, 4782960, 9999990, 19487160, 35831796, 62748504, 105413490, 170859360, 268435440, 410338656, 612220014, 893871720, 1279999980, 1801088520, 2494357866, 3404825424, 4586471400, 6103515600, 8031810150 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

All the terms are divisible by 3.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).

FORMULA

G.f.: 42*x^2*(3+28*x+58*x^2+28*x^3+3*x^4) / (x-1)^8 . - R. J. Mathar, Mar 13 2015

a(n) = 42*A030180(n). - Philippe Deléham, Mar 17 2016

EXAMPLE

If n=2, then n^7 - n = 126.

If n=13, then n^7 - n = 62748504.

MATHEMATICA

Table[n^7 - n, {n, 0, 40}] (* and *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 126, 2184, 16380, 78120, 279930, 823536}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)

PROG

(MAGMA) [n^7-n: n in [0..40]]; // Vincenzo Librandi, May 02 2011

CROSSREFS

Cf. A030180, A061167.

Sequence in context: A255177 A172140 A196414 * A219005 A202398 A113857

Adjacent sequences:  A133496 A133497 A133498 * A133500 A133501 A133502

KEYWORD

nonn,easy

AUTHOR

Parthasarathy Nambi, Dec 01 2007

EXTENSIONS

Corrected and extended by Jonathan Vos Post, Dec 02 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 14:12 EST 2019. Contains 319225 sequences. (Running on oeis4.)