login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132312
Triangle read by rows: T(n,k) = number of partitions of binomial(n,k) into distinct parts of the first n rows of Pascal's triangle, 0<=k<=n.
4
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 4, 7, 6, 7, 4, 1, 1, 4, 11, 14, 14, 11, 4, 1, 1, 5, 28, 57, 56, 57, 28, 5, 1, 1, 7, 73, 273, 434, 434, 273, 73, 7, 1, 1, 10, 189, 1411, 3479, 3980, 3479, 1411, 189, 10, 1, 1, 11, 300, 4138, 16293, 26555, 26555, 16293, 4138, 300, 11, 1
OFFSET
0,17
COMMENTS
T(n,k) = T(n,n-k);
T(n,0) = 1 for n>0;
A000009(n) - 1 <= T(n,1) <= A000009(n) for n>1;
EXAMPLE
T(9,1) = A000009(9)-1 = 7;
A007318(5,2) = A007318(10,1) = 10:
T(5,2) = #{6+4, 6+3+1, 4+3+2+1} = 3,
but T(10,1) = A000009(10) = 10.
MATHEMATICA
T[n_] := T[n] = Table[Binomial[m, k], {m, 0, n-1}, {k, 0, m}] // Flatten // Union;
T[n_, k_] /; k <= n/2 := T[n, k] = Select[ IntegerPartitions[ Binomial[n, k], Length[T[n]], T[n]], Length[#] == Length[Union[#]]&] // Length;
T[n_, k_] /; k > n/2 := T[n, k] = T[n, n-k];
Table[Print["T[", n, ", ", k, "] = ", T[n, k]]; T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 02 2020 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Aug 18 2007
STATUS
approved