|
|
A014631
|
|
Numbers in order in which they appear in Pascal's triangle.
|
|
8
|
|
|
1, 2, 3, 4, 6, 5, 10, 15, 20, 7, 21, 35, 8, 28, 56, 70, 9, 36, 84, 126, 45, 120, 210, 252, 11, 55, 165, 330, 462, 12, 66, 220, 495, 792, 924, 13, 78, 286, 715, 1287, 1716, 14, 91, 364, 1001, 2002, 3003, 3432, 105, 455, 1365, 5005, 6435, 16, 560, 1820, 4368, 8008, 11440
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A permutation of the natural numbers. - Robert G. Wilson v, Jun 12 2014
In Pascal's triangle a(n) occurs the first time in row A265912(n). - Reinhard Zumkeller, Dec 18 2015
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020
F. Richman, Combinations and Permutations
Index entries for triangles and arrays related to Pascal's triangle
Index entries for sequences that are permutations of the natural numbers
|
|
MATHEMATICA
|
lst = {1}; t = Flatten[Table[Binomial[n, m], {n, 16}, {m, Floor[n/2]}]]; Do[ If[ !MemberQ[lst, t[[n]]], AppendTo[lst, t[[n]] ]], {n, Length@t}]; lst (* Robert G. Wilson v *)
DeleteDuplicates[Flatten[Table[Binomial[n, m], {n, 20}, {m, 0, Floor[n/2]}]]] (* Harvey P. Dale, Apr 08 2013 *)
|
|
PROG
|
(Haskell)
import Data.List (nub)
a014631 n = a014631_list !! (n-1)
a014631_list = 1 : (nub $ concatMap tail a034868_tabf)
-- Reinhard Zumkeller, Dec 19 2015
|
|
CROSSREFS
|
Cf. A034356, A074909, A119629.
Cf. A034868, A119629 (inverse), A265912.
Sequence in context: A257798 A183079 A119629 * A263266 A263268 A257472
Adjacent sequences: A014628 A014629 A014630 * A014632 A014633 A014634
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Mohammad K. Azarian
|
|
EXTENSIONS
|
More terms from Erich Friedman
Offset changed by Reinhard Zumkeller, Dec 18 2015
|
|
STATUS
|
approved
|
|
|
|