

A132311


Triangle read by rows: T(n,k) = number of partitions of binomial(n,k) into parts of the first n rows of Pascal's triangle, 0<=k<=n.


3



0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 6, 28, 28, 6, 1, 1, 11, 117, 318, 117, 11, 1, 1, 14, 388, 3344, 3344, 388, 14, 1, 1, 21, 1757, 71277, 290521, 71277, 1757, 21, 1, 1, 29, 8270, 2031198, 53679222, 53679222, 2031198, 8270, 29, 1, 1, 42, 40243
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,8


COMMENTS

T(n,k) = T(n,nk);
T(n,0) = 1 for n>0;
A000041(n)  1 <= T(n,1) <= A000041(n) for n>1;


LINKS

Table of n, a(n) for n=0..57.
Index entries for triangles and arrays related to Pascal's triangle


EXAMPLE

A007318(4,2) = A007318(6,1) = 6:
T(4,2)=#{3+3,3+2+1,3+1+1+1,2+2+2,2+2+1+1,2+1+1+1+1,1+1+1+1+1+1}=7,
but T(6,1) = A000041(6) = 11.


CROSSREFS

Cf. A132312, A007318, A126257, A014631.
Sequence in context: A284992 A191687 A177254 * A254414 A199802 A297347
Adjacent sequences: A132308 A132309 A132310 * A132312 A132313 A132314


KEYWORD

nonn,tabl


AUTHOR

Reinhard Zumkeller, Aug 18 2007


STATUS

approved



