login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132311 Triangle read by rows: T(n,k) is the number of partitions of binomial(n,k) into parts of the first n rows of Pascal's triangle, 0<=k<=n. 4
0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 6, 28, 28, 6, 1, 1, 11, 117, 318, 117, 11, 1, 1, 14, 388, 3344, 3344, 388, 14, 1, 1, 21, 1757, 71277, 290521, 71277, 1757, 21, 1, 1, 29, 8270, 2031198, 53679222, 53679222, 2031198, 8270, 29, 1, 1, 42, 40243, 74464383, 19465193506, 147286801214, 19465193506, 74464383, 40243, 42, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

T(n,k) = T(n,n-k).

T(n,0) = 1 for n>0.

A000041(n) - 1 <= T(n,1) <= A000041(n) for n>1.

LINKS

Alois P. Heinz, Rows n = 0..18, flattened

Index entries for triangles and arrays related to Pascal's triangle

EXAMPLE

A007318(4,2) = A007318(6,1) = 6: T(4,2) = #{3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1} = 7, but T(6,1) = A000041(6) = 11.

Triangle T(n,k) begins:

  0;

  1,  1;

  1,  1,    1;

  1,  2,    2,     1;

  1,  4,    7,     4,      1;

  1,  6,   28,    28,      6,     1;

  1, 11,  117,   318,    117,    11,    1;

  1, 14,  388,  3344,   3344,   388,   14,  1;

  1, 21, 1757, 71277, 290521, 71277, 1757, 21, 1;

  ...

CROSSREFS

Cf. A132312, A007318, A126257, A014631.

Sequence in context: A191687 A322190 A177254 * A254414 A199802 A297347

Adjacent sequences:  A132308 A132309 A132310 * A132312 A132313 A132314

KEYWORD

nonn,tabl

AUTHOR

Reinhard Zumkeller, Aug 18 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 19:28 EDT 2020. Contains 337909 sequences. (Running on oeis4.)